
Fakultät für Informatik
der Technischen Universität München

Master’s Thesis in Informatik

Image Object and Document Classification

using Neural Networks with Replicated Softmax

Input Layers

Jörg Landthaler

Fakultät für Informatik
der Technischen Universität München

Master’s Thesis in Informatik

Image Object and Document Classification

using Neural Networks with Replicated Softmax

Input Layers

Bildobjekt- und Dokumentklassifizierung mittels

Neuronaler Netzwerke mit Replicated Softmax

Eingabeschichten

Jörg Landthaler, B.Sc.

Supervisor: Prof. Dr.-Ing. habil. Alois Knoll

Advisor: Dipl.-Inf. Christian Osendorfer

Submission Date: 21st of December 2011

I assure the single handed composition of this master’s thesis only

supported by declared resources.

——————————————————————

Garching, 21st of December 2011, Jörg Landthaler

Abstract

This thesis explores a variant of the bag-of-visual-words framework with a large fraction of
unsupervised learning to predict the presence or absence of objects in images. We extract local
image features with different SIFT detector and descriptor implementations from the PASCAL
VOC 2007 dataset. Based on the bag-of-visual-words assumption, we quantize the visual words
into visual word counts using Sculley’s Mini-batch k-Means. Afterwards, we train Neural Net-
works with Replicated Softmax input and multilabel classification output layers. We use these
Neural Networks with multiclass classification output layers (softmax) for the task of document
classification, too.

Major contributions of this thesis encompass a detailed mathematical derivation and imple-
mentation of the Replicated Softmax (RSM) model presented by Salakhutdinov and Hinton, as
well as a detailed mathematical derivation of Welling et al.’s Exponential Family Harmoniums
(EFH). We can report classification results on the 20 Newsgroups dataset competitive e.g. to
the directed DiscLDA model. Moreover, Neural Networks with RSM input layers significantly
outperform standard Feed-forward Neural Networks on the PASCAL VOC 2007 image object
classification challenge (in terms of mean Average Precision).

Moreover, we present the DualRSM model for image object classification that adds a second
visible units wing to the RSM model and hence enables it to combine two different histogram
data inputs. In particular, we train it on visual word counts together with their respective
all-to-all distances histogram. This is an attempt to incorporate information about the spatial
relationships among the visual words, i.e. to leverage the strongly simplifying bag-of(-visual)-
words assumption.

3

Kurzfassung

Diese Arbeit untersucht eine Variante des ’bag-of-visual-words’ Frameworks mit einem großen
Anteil unüberwachten Lernens, um die Anwesenheit oder Abwesenheit von Objekten in Bildern
vorherzusagen. Wir extrahieren Bildworte mit verschiedenen SIFT Detektoren und Deskrip-
toren aus den Bildern des PASCAL VOC 2007 Datensatzes und transformieren die Bildworte in
Bildworthäufigkeiten unter Verwendung des Mini-batch k-Means Clustering Algorithmus. Dabei
wird vereinfachend angenommen, dass Bildworten, analog zu Worten in Dokumenten, auch ohne
Beachtung der Auftretensreihenfolge Aussagekraft über das entsprechende Bild bzw. Dokument
innewohnt. Anschließend trainieren wir künstliche Neuronale Netze mit Replicated Softmax
Eingabeschichten und mehreren binären Ausgabeneuronen in der Ausgabeschicht auf den Bild-
worthäufigkeiten, sowie auf Worthäufigkeiten extrahiert aus dem 20 Newsgroups Datensatz.

Zentrale Beiträge dieser Arbeit umfassen eine detaillierte mathematische Herleitung und Im-
plementierung des Replicated Softmax (RSM) Modells von Salakhutdinov und Hinton, sowie
eine detaillierte mathematische Herleitung von Welling et al’s Exponential Family Harmonium
(EFH) Modell. Wir können Klassifizierungsergebnisse vorlegen, die auf dem 20 Newsgroups
Datensatz konkurrenzfähig zu dem gerichteten DiscLDA Modell sind. Darüber hinaus lassen die
Klassifierungsergebnisse von Neuronalen Netzen mit Replicated Softmax Eingabeschichten auf
der PASCAL VOC 2007 Klassifizierungsaufgabe normale vorwärtsgerichtete Neuronale Netze
hinter sich.

Außerdem präsentieren wir das DualRSM Modell zur Bildobjektklassifizierung, welches die
Eingabeschicht des RSM Modell dahingehend erweitert, dass zwei verschiedene Typen von
Eingabedaten eingesetzt werden können, insbesondere Bildworthäufigkeiten in Kombination mit
Abstandshäufigkeiten der Bildworte. Somit handelt es sich um einen Versuch, die stark verein-
fachende Annahme, dass die Reihenfolge von Bildworten vernachlässigbar ist, abzuschwächen,
indem Informationen über räumlichen Beziehungen unter den Bildworten miteinbezogen werden.

4

Acknowledgments

First and foremost, I am particularly thankful to my advisor Christian Osendorfer for giving
me the opportunity to do this thesis, who guided me for over a year into the field of Machine
Learning and tangent areas and always fed me with fresh, interesting and highly useful advise.
I want to thank Jan Schlüter for a very prosperous email conversation. I also want to thank
Tijmen Tieleman and Volodymyr Mnih for their fast and useful help with Gnumpy, as well as
Dr. Peter Gehler for quickly answering my question about the Rate Adapting Poisson paper.
Last but not least, I am deeply thankful to my parents for their patience and support throughout
my studies.

5

Contents

1 Introduction 8

2 Prerequisites and related work 12
2.1 Datasets . 12

2.1.1 20 Newsgroups . 12
2.1.2 PASCAL VOC 2007 . 12

2.2 Scale-Invariant Feature Transform (SIFT) . 13
2.3 Mini-batch k-Means (MBKM) . 18
2.4 Logistic Regression & Multiclass Logistic Regression 22
2.5 Feed-forward Neural Networks & error backpropagation 24
2.6 Deep Belief Networks (DBN) & Deep Auto-Encoders (DAE) 30
2.7 Restricted Boltzmann Machines (RBM) & Harmonium models 32

2.7.1 Product of Experts (PoE) & Contrastive Divergence (CD) 34
2.7.2 Standard RBM . 37
2.7.3 Exponential Family Harmonium (EFH) 39
2.7.4 Undirected Probabilistic Latent Semantic Indexing (UP-LSI) 40
2.7.5 Rate Adapting Poisson (RAP) . 41
2.7.6 Constrained Poisson Model (CP) & Semantic Hashing (SH) 42
2.7.7 Replicated Softmax (RSM) . 43
2.7.8 Dual Wing Harmonium (DWH) . 46
2.7.9 Practical issues of Contrastive Divergence learning 47

3 Own work 49
3.1 Evaluation of the Replicated Softmax model for document retrieval on the 20

Newsgroups dataset . 49
3.2 Neural Networks with Replicated Softmax input layers, modified error backprop-

agation and training details . 53
3.3 Document classification using Neural Networks with Replicated Softmax input

layers on the 20 Newsgroups dataset . 55
3.4 Extraction of visual words and visual word counts 59
3.5 Evaluation of Neural Networks with Replicated Softmax input layers on visual

word counts . 62
3.6 DualRSM model & visual word all-to-all distance counts 75

4 Conclusion 80

A Development environment 82

B Batch-, online- and minibatch-methods & momentum 83

6

Contents

C Mathematical derivations 85
C.1 Sigmoid, softmax and hyperbolic tangent function derivatives 85
C.2 Cross-entropy error function gradients . 86
C.3 Conditional independence and sampling in the RBM model 87
C.4 Conditional independence and sampling in the EFH model 89
C.5 Conditional independence and sampling in the RSM model 90

Bibliography 94

7

1 Introduction

Enabling machines to understand images has been and still is a field experiencing strong in-
terest. Robots for example heavily depend upon detection and classification of objects. They
have to weld the metal rather than to endanger human body parts. An interesting domain of
image interpretation constitutes picture search in the World Wide Web. One approach to this
objective is to annotate images manually. However, it is desirable to abandon the imperative of
annotations, put another way to automate this process. Google recently launched an applica-
tion capable of both: Searching for similar images given one image or searching for images given
words as input. In fact, it is even capable of combining both types of input. Possible use cases
are vast and diverse: Imagine for example you make a picture of someone wearing a nice shirt
and you want to find a webshop where you can buy it, or you take a photo of a person and later
on you search for this person’s online profile in social communities, to name but a few.

A common approach to infer image content - without resorting to annotation data - is to capture
’visual words’ and feed them into an algorithm stemming from the field of document retrieval
or information retrieval. The task of document retrieval is to seek by keywords for documents
from a corpus (a collection of documents), see e.g. Manning et al. [32] for an introduction. Doc-
ument retrieval systems are usually based on indexing the corpus. Therefore, they often exploit
the simplifying bag-of-words assumption, i.e. each document is represented by an unordered
list of corpus-wide keywords. Typically, they are aggregated to word counts (also called term
frequency (tf)). Visual words are local descriptors extracted from images and are assumed to
act like their document retrieval counterparts. Image retrieval then can be carried out by feed-
ing a document retrieval algorithm with the visual word counts as features, also referred to as
bag-of-visual-words framework, Sivic and Zisserman [52] or vector quantization (VQ) approach,
e.g. in Bengio et al. [66].

Pascal VOC‘07
Images

SIFT
Descriptors

MBKM
Clustering

Visual Word
Counts

Image Object
Classification

Person, Bicycle

Aeroplane

RSM and CD
pre-training

Neural Network
and error back-

propagation

unsupervised supervised

Figure 1.1: Schematic illustration of our image object classification pipeline.

For our goal of image object classification we use a pipeline of algorithms as depicted in Figure
1.1. The visual words are extracted from images contained in the Pascal VOC 2007 dataset [13]

8

1 Introduction

by application of the well-known SIFT (Scale-Invariant Feature Transform) [28] algorithm pre-
sented by Lowe in 1999. Next, the visual words are quantized into visual word counts using
Sculley’s Mini-batch k-Means (MBKM) algorithm [51], a computationally fast, memory saving
and on the GPU easily parallelizable variant of the classical k-Means clustering algorithm. We
determine, if one or more objects of the 20 different classes provided by the dataset are present
in an image by feeding a Neural Network with a special input layer. Salakhutdinov and Hin-
ton’s stand-alone Replicated Softmax (RSM) model [47] naturally integrates as an input layer
of a Neural Network1. The Neural Network is conceptually trained as a Deep Belief Network,
see Bengio et al. [6], Hinton and Salakhutdinov [17], i.e. pre-trained unsupervised, layer by
layer with Hinton’s Contrastive Divergence [18] learning and subsequently fine-tuned by error
back-propagation. The Neural Networks achieve multilabel image object classification with a
sigmoidal output layer, which is pre-trained with single layer error backpropagation.

Besides testing my Replicated Softmax implementation on the 20 Newsgroups dataset using
dictionaries based on most frequent words and highest information gain for document retrieval,
we also train Neural Networks with Replicated Softmax input and softmax output layers for
multiclass document classification on the 20 Newsgroups dataset.

Pascal VOC‘07
Images

SIFT
Descriptors

MBKM
Clustering

Visual Word
Counts

Image Object
Classification

Person, Bicycle

Aeroplane

DualRSM
and CD pre-

training

Neural Network
and error back-

propagation

unsupervised supervised

(All-to-all)
Distance Counts

Figure 1.2: Schematic illustration of our DualRSM image object classification pipeline.

Moreover, we introduce the DualRSM model. It extends the RSM model in the image object
classification application, analogous to a Dual Wing Harmonium [62] introduced by Xing et al.,
to support two different types of count input data. Burghouts et al. [10] report that all-to-all
distances of visual words typically obey Weibull distributions. My vision was that these dis-
tance counts carry discriminative information about the objects present in images. Therefore,
the DualRSM model is fed with both: the visual word counts and the all-to-all visual word
distance counts, as illustrated in Figure 1.2. This is an attempt to take the spatial relationships

1Do not get confused: We use the term Neural Network here, because Deep Belief Networks are typically defined
to have several layers of hidden units. As it turns out, and unfortunately on contrary to our initial intention,
more than one layer of hidden units does not lead to better results in our pipeline. Nevertheless, we still
pre-train our Neural Networks layer-wise using Contrastive Divergence learning as it is common in Deep Belief
Networks.

9

1 Introduction

of the descriptors into account by using the frequencies of the discretized distances among the
descriptors, i.e. we attempt to overcome or at least to moderate the bag-of-words assumption. It
can also be interpreted as an image retrieval counterpart to Zhang et al.’s [65] term connections
frequency for document retrieval.

Our primary focus dwells on Neural Networks with RSM and DualRSM input layers for image
object classification. Nevertheless, along the multiple stages of the complete pipeline a variety of
different approaches has been proposed. Images can be represented in various fashions. However,
in order to apply document retrieval algorithms to the image retrieval problem, utilizing visual
words is common practice. There exists a bunch of local feature detectors and descriptors, e.g.
GLOH [35], SURF [3], HOG [11], LESH [49], see Mikolajczyk and Schmid [35] for an overview
of detectors. Quite some effort was put into reducing the dimensionality of the 128-entries SIFT
descriptor vectors e.g. PCA-SIFT by Ke and Sukthankar [24], Winder and Brown [60] or train-
ing a Deep Belief Network on the descriptors, in order to apply the vector space model from
information retrieval, see Philbin et al. [41]. However, it is rare that the parameters of the SIFT
detector are inspected, even though they have crucial impact on the quality of the descriptors
localized. We stick with the original SIFT detector and descriptor for reasons of comparability,
but compare different SIFT implementations and PCA-SIFT(36). We attempted to obtain more
distinctive keypoints by using custom parameters for the SIFT detector.

The next step in the pipeline is to map the visual words to keywords, i.e. to define a dictio-
nary. The classical approach is to apply a clustering algorithm like the k-Means algorithm.
Unfortunately, k-Means scales poorly to large corpora. Hierarchical- [38] and Approximate- [40]
k-Means are modifications to the original k-Means algorithm to circumvent these shortcomings
through local decisions in high-dimensional space, relaxing the quality requirements to the re-
sulting cluster centers on the other hand. Another approach is to express the descriptors as a
linear combination of keywords, see e.g. Bengio et al. [4] or Zhou et al. [66], possibly even online,
e.g. Mairal et al. [31]. This is usually called sparse coding. They report very good results, but
quantizing the SIFT descriptors is not the priority of this thesis. We choose the Mini-batch
k-Means algorithm for this step, because it is an unsupervised algorithm and because of its
scalability properties.

The last step in the pipeline is to use the keyword counts for classification. Typical classification
methods are Support Vector Machines, used e.g. by Bengio et al. [4], Zhou et al. [66], or Neural
Networks. We propose to use Neural Networks with special input layers: first a Replicated Soft-
max layer, naturally modeling word counts as input, and secondly a DualRSM layer, naturally
modeling word and distance counts as input.

Other approaches to image object classification are e.g. to feed a Neural Network directly with
raw pixel values. This was explored e.g. by Krizhevsky [25], however only on tiny images sub-
divided into patches with Gaussian-Bernoulli Restricted Boltzmann Machines (RBM). It can
be seen as an undirected counterpart to convolutional networks, see e.g. Bishop [7] Subsection
5.5.6.. Roux et al. [44], similarly divide images into patches, learn RBMs on them and combine
the results with other types of RBMs. They even employ softmax units, but not the hidden
biases rescaling of the RSM model.

10

1 Introduction

Except for the descriptor extraction, all subsequent steps are carried out using minibatch vari-
ants of stochastic gradient descent. Therefore, the complete pipeline scales well. As illustrated
in Figures 1.1 and 1.2 large fractions of our pipeline are governed by unsupervised learning.
Thus, it is possible to run a crawler on the web and to learn reasonable parameters for different
stages of the pipeline easily on a large corpus.

This thesis is organized as follows: Chapter 2 introduces the existing and essential prerequisites
for our own work. It covers the datasets and fundamental algorithms from all stages: Scale In-
variant Feature Transform (SIFT) and Mini-batch k-Means; Logistic Regression and Multiclass
Logistic Regression as building blocks of Neural Networks and Restricted Boltzmann Machines
as building blocks of Deep Belief Networks. Furthermore, we describe the chain of different
RBM/EFH models that lead to the Replicated Softmax model. It also describes Contrastive Di-
vergence learning for pre-training as well as the error backpropagation algorithm for fine-tuning
Deep Belief Networks.
Long mathematical derivations are mostly outsourced to Appendix C. Stochastic gradient de-
scent and its minibatch variants as well as the momentum technique are used throughout this
work and therefore outsourced to Appendix B.

Chapter 3 covers the work contributed by us. In particular, Section 3.1 shows that my imple-
mentation reproduces results for document retrieval from Salakhutdinov and Hinton’s paper on
the 20 Newsgroups dataset. It also reveals interesting technical details on how to extract most
frequent word dictionaries from the 20 Newsgroups dataset plus good image retrieval results
using dictionaries based on highest information gain. Details on using the RSM model in Neural
Networks using a modified error backpropagation algorithm can be found in Section 3.2. Sec-
tion 3.3 then uses both types of dictionaries in the multiclass document classification setting,
i.e. Neural Networks with RSM input and softmax output layers.
Section 3.4 covers the extraction of visual words and visual word counts from the PASCAL
VOC 2007 dataset. Section 3.5 is dedicated to the central application of Neural Networks with
RSM input and sigmoidal output layers on the visual word counts. Standard Feed-forward
Neural Networks are the baseline against our pipeline using different SIFT implementations,
kmeans++ initialization of Mini-batch k-Means and Deep Neural Networks with RSM input
layers. Moreover, we tried a linear embedding using RSM models with two and three hidden
units. Furthermore, we experimented with Support Vector Machines trained on both: visual
word counts and codes obtained by a Deep Auto-Encoder.
Section 3.6 presents all-to-all distance counts extraction and the DualRSM model. Note that
minor technical prerequisites are treated in the respective Sections of Chapter 3.

All practical work was performed on the hard- and software configuration described in Appendix
A. Finally, Chapter 4 concludes this thesis with a short discussion of contributions and future
work.

11

2 Prerequisites and related work

2.1 Datasets

We use two datasets: The 20 Newsgroups dataset serves to verify our RSM implementation and
we perform document retrieval and classification on it. For the task of image object classification
we selected the frequently used and challenging Pascal VOC 2007 dataset.

2.1.1 20 Newsgroups

The 20 Newsgroups dataset 1 consists of 18.845 Usenet newsgroup entries split (by date version)
into 11314 training and 7531 test records. The records originate in 20 different topics and are
almost evenly partitioned:

• comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, comp.windows.x

• rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey

• sci.crypt, sci.electronics, sci.med, sci.space

• misc.forsale

• talk.politics.misc, talk.politics.guns, talk.politics.mideast,

• talk.religion.misc, alt.atheism, soc.religion.christian

2.1.2 PASCAL VOC 2007

The PASCAL VOC (Visual Object Classes) 2007 dataset [13] comprises 9963 labeled images
containing objects from 20 different categories:

• Person: person

• Animal: bird, cat, cow, dog, horse, sheep

• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

In contrast to the very evenly partitioned 20 Newsgroups dataset, here the class person is pre-
dominant with 2008 images picturing persons in the train set, whereas the objects of all other

1http://people.csail.mit.edu/jrennie/20Newsgroups/

12

http://people.csail.mit.edu/jrennie/20Newsgroups/

2 Prerequisites and related work

classes have an average of 278.84 instances (test set: 2007 versus 263.47).2 Note that up to 6
objects can be present in one image. The dataset is split into 5011 training set images (we use
the train set and the validation set combined as training set) and 4952 test set images of differ-
ent sizes, see Table 2.1 for further details. This dataset of real-world photos is very challenging,
including various camera angles, strong differences in illumination and contrast and even objects
from the same class differ vigorously.

Minimum Maximum Average Standard Deviation

T
ra

in 5011 images,
12606 objects,
7307 targets

Height 96 500 383.631411 62.870358
Width 127 500 472.703053 57.577160
Objects 1 6 1.457992 0.652327

T
es

t 4952 images,
12032 objects,
7013 targets

Height 139 500 381.537763 63.080221
Width 148 500 471.246567 59.811408
Objects 1 5 1.416195 0.617070

T
ot

al 9963 images,
24638 objects,
14320 targets

Height 96 500 382.590786 62.980296
Width 127 500 471.979123 58.699870
Objects 1 6 1.437218 0.635360

Table 2.1: PASCAL VOC 2007 dataset statistics.

Several ground truth data for training and test set are provided. We use the labels provided for
the Classification Challenge, where the target is to predict whether objects from a given class
are present in an test image. Hence, multiple occurrences of objects from one class are treated
as one object is present. Moreover, 606 targets in the train set 606 and 619 in the test set are
tagged as difficult and therefore not considered in the classification challenge.

2.2 Scale-Invariant Feature Transform (SIFT)

In 2004 David Lowe described a full pipeline of algorithms for object recognition: The Scale-
Invariant Feature Transform (SIFT) [29]. It includes a key point detector and a key point
descriptor besides methods for indexing and matching the keypoints from different images and
objects. However, often the term SIFT refers to only the detector and descriptor. We employ
Lowe’s SIFT implementation3 and the open SIFT detector and SIFT descriptor implementations
by Vedaldi (SIFT++, VLFeat4) [56] for the purpose of gathering visual words. This Section de-
picts SIFT detector and descriptor in further detail and briefly discusses alternative approaches.
Several details described here source from Vedaldi’s documentation [56].

Using SIFT, an image is described by feature points (also called interest points). The intention
of feature points is that they (hopefully) hold relevant information about the content of the im-
age at, or to be more precise around these points, image for example edges or corners of objects.

2See http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/dbstats.html for further details on
statistics.

3http://www.cs.ubc.ca/ lowe/keypoints/
4http://www.vlfeat.org

13

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/dbstats.html
http://www.vlfeat.org

2 Prerequisites and related work

a) b)

Figure 2.1: a) Gaussian scale space b) Difference of Gaussians scale space.

Both, detector and descriptor are based on the image gradient at different scales. The inter-
est points are detected as local extremes of a Difference of Gaussian scale space and described
utilizing the corresponding Gaussian scale space. Within a frame around the detected interest
points, a weighted histogram of normalized gradient orientations is calculated and wrapped up
in vectors of typically 128 elements. SIFT descriptors are appealing, since they are, to a certain
degree, invariant to affine transformations (translation, dilation, rotation) and partially invari-
ant to illumination changes, noise, occlusion and 3D projection. Put another way, one seeks for
automatically extracted abstract descriptions of the information contained in images, compared
to plain pixel data or manually added information like annotations.

The scale spaces can be imagined as flipped image pyramids. First of all, the gray version of
the original image I(x) is pre-smoothed using a 1D-Gaussian Kernel (approximated by 7 sample
points) in both directions consecutively with σ = 0.5:

G(x, σ) = (g(σ) ◦ I)(x), g(x, σ) =
1√

(2π)σ
exp

−x2
2σ2 (2.1)

Next, the pre-smoothed image is enlarged by factor two in both directions (using bilinear inter-
polation). This enlarged version of the image serves as the base level in the Gaussian scale
space pyramid. One proceeds from one level in the pyramid to the next lower level by down-
sampling by half in each direction, as depicted in Figure 2.1 a). Within each level of the pyramid
(also called octave) successively smoothed versions of the resized images are calculated, called
sub-levels. Again, the smoothing is achieved by application of the 1D-Gaussian Kernel succes-
sively in both directions, cf. Figure 2.2 a) to c).

If the octaves are indexed by o, while the sub-levels are identified by s, then the combination of
octave index o and scale index i, i.e. the position in the gaussian scale space, can be characterized
through a single parameter σ (scale coordinate):

σ(o, s) = σ02o+s/S (2.2)

14

2 Prerequisites and related work

a) b) c)

d) e) f)

Figure 2.2: Illustration of different Gaussian and Difference of Gaussians sub-levels on level o =
0: a) G(x, σ(o = 0, s = 0)) b) G(x, σ(o = 0, s = 1)) c) G(x, σ(o = 0, s = 3))
d) DoG(x, σ(o = 0, s = 0)) e) DoG(x, σ(o = 0, s = 2)) f) Original image, from
PASCAL VOC 2007 dataset [13].

with o ∈ omin + [0, . . . , O − 1] , s ∈ [0, . . . , S − 1], where omin being the base level (by default −1,
which corresponds to the enlarged version of the image by factor 2), O the number of octaves
and S the number of sub-levels (by default S = 3).

Based on the Gaussian scale space, the Difference of Gaussians (DoG) scale space is cal-
culated. The DoG scale space can be thought of as the derivative of the Gaussian scale space
along the scale coordinate σ. However, as the name suggest, the DoG can easily be calculated
as the difference of two neighboring sub-levels in the Gaussian scale space, see Figure 2.2 d) and
e).

DoG(x, σ(o, s)) = G(x, σ(s+ 1, o))−G(x, σ(s, o)) (2.3)

The SIFT detector utilizes the Difference of Gaussians scale space. Candidate keypoints are
the local extremes of the DoG scale space. Therefore, the algorithm iterates through the levels
and sub-levels and checks each pixel against the eight neighboring pixels for a local maximum or
minimum. If it is an extremum, then one searches along the scale coordinate for the most intense
corresponding 9 pixels. Candidate keypoints are rejected, if the gradient modulus falls below
a specific peak threshold. Hence the peak threshold can be elevated such that only strongly
peaked keypoints are accepted, cf. Figure 2.3 a) to e). Likewise a candidate keypoint is rejected,
if it falls short of a certain edge threshold. The intention is to accept only keypoints on corners
rather than in valleys as illustrated in Figure 2.3 f) to i). Due to the up- and downsampling
along the levels of the pyramid, the final keypoint spatial coordinates x and y (in the original

15

2 Prerequisites and related work

a) f)

b) g)

c) h)

d) i)

e) j)

Figure 2.3: Influence of the SIFT parameters peak- and edge-threshold. The center of each
yellow circle represents a detected point. a) Test image for peak threshold with
values 0, 10, 20 and 30 from b) to e). f) Test image for edge threshold with values
3.5, 5, 7.5 and 10 from f) to h). Images are copied from [57]. See in color for better
visualization.

image) are sub-pixel precise (refined using square interpolation).

Moreover, a keypoint comes along with a major orientation, which is calculated as the predom-
inant gradient orientation around the keypoint in a Gaussian Window of deviation σw = 1.5σ
(though truncated in reality at |x| < 4σw). The gradient orientations within this Gaussian
Window are counted in a histogram. After that the histogram is smoothed by a moving average
filter. In the end, the histogram’s bin with the maximum value and those bins with a value larger
than 80% of the maximum value are identified as major orientations. Hence, several keypoints
at the same spatial and scale coordinates, but with different major orientations, can be found.
Finally, one keypoint is described by two spatial coordinates, one scale coordinate and one major
orientation.

The SIFT descriptor provides a compact representation of the gradient orientations around a
detected keypoint. Therefore, the descriptor utilizes the keypoint detector information and the
Gaussian Scale Space. Imagine a virtual square (called frame or support) around the spatial
coordinates of each keypoint rotated to align with the major orientation of the detected key-
point, cf. the enclosing red squares in Figure 2.4 a). Figure 2.4 is generated using Vedaldi’s
VLFeat. However, be aware that Figure 2.4 a) actually depicts the resulting SIFT descriptors
(histograms), whereas according to Vedaldi the visualization in Figure 2.4 b) is used to depict
the SIFT frames.

16

2 Prerequisites and related work

a) b)

Figure 2.4: Illustration of the SIFT descriptors: a) Selected SIFT frames (support of descriptors),
b) All resulting SIFT descriptors.

The descriptors are calculating as follows: The virtual disk is clipped with the actual Gaussian
on the detected level and sub-level. I.e. virtual disks close to the border of the Gaussian image
might lose some of their area. Next, the pixels in the area of the frame are calculated back, such
that they are aligned to the major orientation (using bilinear interpolation).

Now, the square is subdivided into four times four sub-squares. Within each sub-square the
gradient orientations are taken into account and discretized into 8 bins, such that they cover full
360◦. Each bin then contains the counts of the complying gradient orientations. The gradient
orientations in the 4 times 4 spatial bins together with the 8 bins for the orientation build up a
three-dimensional histogram with 4∗4∗8 = 128 bins. Additionally, the histogram is weighted by
the gradient modulus and a Gaussian Window. In the end, the 128-entries vector is normalized
(such that value of each entry is between 0 and 255). Each bin then represents the amount of
respective weighted gradient orientations. Likewise, each red sub-square of each descriptor in
Figure 2.4 a) contains several orientation strokes of different length. Vedaldi’s implementation,
however, does not necessarily produce the exact same results as Lowe’s original implementation.
From now on, we use the SIFT frame visualization (yellow in Figure 2.4 b)) to illustrate SIFT
descriptors due to their clearer visualization.

Schmid and Mikolajczyk evaluated the performance of different detectors (Harris points, Hessian-
Laplace regions, Harris-Affine regions, Harris-Laplace) and descriptors together with the presen-
tation of a new SIFT-alike descriptor: Gradient location-orientation histogram (GLOH). One
result is, that SIFT-like descriptors perform best, compared to descriptors based on pixel in-
tensities, spatial-frequency techniques, differential descriptors and other techniques, for example
sift-alike PCA-SIFT. They also argue for the superiority of their GLOH descriptor, which basi-
cally utilizes a circular support region rather than a quadratic one like SIFT. In spite of that, we
stick with SIFT detector and descriptor implementations, because they are open and frequently
used.

An interesting variation of SIFT is PCA-SIFT introduced by Ke and Sukthankar [24]. PCA-

17

2 Prerequisites and related work

SIFT works directly on the gradient values in x- and y-direction in the oriented 39x39 pixel
support around a keypoint and applies Principal Component Analysis (PCA) on these gradient
values, resulting in a descriptor with e.g. 36 entries rather than 128 compared to original SIFT.
However, Zha et al. [64] (see also Ding and He [12]) showed that PCA is a continuous relaxation
of discrete k-Means clustering, the ensuing algorithm in our pipeline.

Another interesting property of the SIFT descriptors is that their all-to-all distances usually
obey a Weibull distribution as claimed by Burghouts et al. [10].

2.3 Mini-batch k-Means (MBKM)

This Section describes Sculleys’s Mini-batch k-Means (MBKM) clustering algorithm [51], a com-
putationally fast, memory-efficient and easily parallelizable variant of the classical, unsupervised
k-Means algorithm presented by Lloyd in 1957 (published in 1982) [27]. We use this unsuper-
vised method to quantize the SIFT descriptor vectors of each picture into visual word counts.

The goal of clustering is to group subsets of ’similar’ or ’related’ elements together. Imagine for
example to throw a handful of pebbles onto the street. Afterwards, you will be very likely able
to identify groups of pebbles that lie closer together than others, i.e. to identify clusters. In this
simple case, the human mind is capable of easily choosing a suitable number of cluster centers.
In general, determining the number of cluster centers K is not that obvious. Nevertheless, for
now we will assume K to be given. In more than three dimensions the goal of clustering remains
the same, however, the problem is not even visualizable so easily any more. Even worse, Clus-
tering, in general, is a NP-hard problem, see Aloise et al. [1] Therefore, the original k-Means
algorithm attempts to find an approximate solution by applying an iterative procedure.

Formally spoken: Given a normalized dataset with N (D-dimensional) data points {x1, . . . , xN};
xn ∈ RD, the task is to find K cluster centers c1, . . . cK ; ck ∈ C ⊂ RD that minimize the objective
function

minE(c) =
1
2

N∑
n=1

‖f(C, xn)− xn‖22 =
1
2

N∑
n=1

K∑
k=1

rnk‖ck − xn‖22 (2.4)

where f(C, xn) assigns each data point to one cluster center, i.e. defines a 1-of-K coding scheme
for each data point. Alternatively, it can be written using indicator variables rnk ∈ {0, 1}, cf.
Bishop [7] Section 9.1. We consider here the L2-norm (Euclidean Norm), which is indicated by
the 2 in the subscript of the modulus. The factor 1

2 is added for convenience after calculating
the gradient and does not affect the minimum of the objective function. It is essential to nor-
malize the dataset before feeding it to the k-Means algorithms. This ensures that the Euclidean
distance function applies comparable weights to each variable.5

As Bottou and Bengio showed [9], the k-Means algorithm is an instance of the EM-algorithm
(Expectation Maximization). The EM-algorithm is a general framework to optimize objective
functions with coupled parameters, i.e. variables for that the function cannot be optimized

5For an example see: http://intelligencemining.blogspot.com/2009/07/

data-preprocessing-normalization.html

18

http://intelligencemining.blogspot.com/2009/07/data-preprocessing-normalization.html
http://intelligencemining.blogspot.com/2009/07/data-preprocessing-normalization.html

2 Prerequisites and related work

independently. The core of the EM-algorithm is to alternate clamping one subset of parameters
while optimizing for the remaining parameters.
For the k-Means algorithm, we have to alternate updating the cluster centers and updating the
assignment of the data points to the cluster centers. The assignment of the data points to the
cluster centers is straightforward: Choose for each data point the closest cluster center according
to the Euclidean distance:

rnk =

{
1 , if k = arg minj ‖cj − xn‖22
0 , otherwise

(2.5)

Next, the cluster centers are updated. Therefore, calculate the derivative w.r.t. the prototypes
for the cluster centers ck and set it to zero:

∂E(c)
∂ck

=
∂

∂ck

1
2

N∑
n=1

K∑
k=1

rnk‖ck − xn‖22 =
N∑
n=1

rnk(ck − xn) != 0 (2.6)

Solving for ck yields:

ck =
∑N

n=1 rnkxn∑N
n=1 rnk

=
1
Nk

N∑
n=1

rnkxn (2.7)

with Nk :=
∑N

n=1 rnk. These two steps are iterated until convergence (neglectable small
changes), or for a fixed amount of iterations T . Hence, the time-complexity is O(TKN) in
the latter case. The right hand side of Eq. 2.7 calculates the mean of the assigned data points,
the reason for calling the algorithm k-Means.

The classical k-Means algorithm is a batch algorithm, i.e. all data points are involved before the
variables are updated. MacQueen [30] derived an online variant using stochastic gradient
descent (SGD) by presenting only one data point xn per update step. Since Eq. 2.6 is of the
form of Eq. B.3, MacQeen proposed a sequential update rule of the form of Eq. B.4:

cnew
k = cold

k − ηn
(
cold
k − xn

)
(2.8)

with learning rate ηn. Bottou and Bengio [9] showed that the learning rate is optimal, when
ηn = 1

nk
. And nk is assigned the value one, if the current data vector xn is assigned to cluster k

and zero otherwise.

In 2010, Sculley introduced the Mini-batch k-Means (MBKM) algorithm [51]. The simple,
yet powerful idea is to use minibatches of randomly chosen data points, instead of single data
points as in the SGD variant, i.e. applying Eq. B.5 to the sequential update rule:

rmk =

{
1 , if k = arg minj ‖cj − xm‖22
0 , otherwise

(2.9)

19

2 Prerequisites and related work

and

cnew
k = cold

k − 1
Mk

M∑
m=1

rmk

(
cold
k − xn

)
(2.10)

with M � N chosen by the user and Mk :=
∑M

m=1 rmk. However, unlike the general form of Eq.
B.5, Sculley provided, based on the results of Bottou and Bengio, a prototype-specific learning
rate 1

Mk
. Additionally, the records presented in each minibatch are selected randomly: draw

from a discrete uniform distribution.
Sculley argues for the superiority of his algorithm over one record stochastic gradient descent:
It leads to qualitatively better results, since minibatches contain less stochastic noise compared
to single data points, while the computational costs remain low (time-complexity of O(TKM),
with M chosen by the user).

Due to the iterative nature of the family of k-Means algorithms, they can get stuck in local rather
than global optima. On the one side of the coin, the non-determinism of the MBKM algorithm
can induce the Mini-batch k-Means algorithm to overcome local optima over time of execution
better than SGD or the batch version. On the other side of the coin, the non-determinism
does not guarantee that the cluster assignments do not flip any more. Hence a fixed number of
iterations must be used as stopping criteria. Additional speedup for MBKM can be achieved by
applying second binomial formula 6.

Figure 2.5 illustrates how MBKM proceeds on a simple 2-dimensional dataset. The data points
are drawn from 3 Gaussians (with means: (0.323, 0.237), (0.229, 0.7), (0.72, 0.55); à 150, 125,
140 points; 418 points in total and a variance of 0.05 in both directions). Note that the decision
boundaries (between two colors in b), d) and f)) are linear. In the multidimensional case the
boundaries generalize to simplices.

We also experiment with the k-means++ seeding algorithm7, introduced by Arthur and Vas-
silvitskii [2], for the initialization of the MBKM algorithm. The idea is to choose cluster centers
far apart from each other with high probability. The first cluster center is a data point chosen
uniformly from the dataset. The remaining cluster centers are selected subsequently using D2

weighting, as the authors call it. Therefore, the distance from each data point to the closest
already chosen cluster center is calculated and each data point x is assigned the probability

D(x)2∑N
n=1 xnD(x)2

with D(x) being the distance to the closest cluster center. From this probability
distribution the next cluster center is drawn. After this seeding procedure, we continue with
MBKM. The kmeans++ algorithm provides guarantees for the error (O(log k)-competitive) and
usually reduces the necessary amount of iterations of MBKM. Despite kmeans++ received bad
marks in Peterson et al.’s comparison of different k-means seeding methods [39], we apply it,
due to its widespread use.

The k-Means algorithm - simple yet popular - experienced various other modifications and spe-
cializations. Particularly in the field of feature retrieval, e.g. Hierarchical k-Means (HKM) [38]
or Approximate k-Means (AKM) [40] have been proposed. HKM uses trees to start with some

6http://blog.smola.org/post/969195661/in-praise-of-the-second-binomial-formula
7http://scikit-learn.sourceforge.net/

20

http://blog.smola.org/post/969195661/in-praise-of-the-second-binomial-formula
http://scikit-learn.sourceforge.net/

2 Prerequisites and related work

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
a) Initialization

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
b) E-Step Iteration 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
c) M-Step Iteration 1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
d) E-Step Iteration 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
e) M-Step Iteration 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
f) Result after 20 Iterations

Figure 2.5: Illustration of the Mini-batch k-Means (MBKM) algorithm (K=3, M=20, T=20)
on an artificial dataset with data points drawn from three 2-dimensional Gaussians.
a) Initialization of the MBKM algorithm by choosing randomly 3 data points from
the dataset marked with ’x’. b) Calculate the nearest cluster centers for each data
point. Here, the assignments for all data points are shown for clarity - of course, only
the assignments for the data points chosen by the minibatch are necessary for the
succeeding M-step. c) Use a randomly chosen subset of data points to update the
cluster centers by calculating the means of the data points assigned to the cluster
centers (indicated by the black arrows; new cluster centers indicated by ’+’). Only
data points from the randomly chosen minibatch that are used to calculate the update
to the cluster centers are displayed. d) Recalculate the nearest cluster centers again.
e) Update the cluster centers again. f) The big squares indicate the final cluster
centers after 20 full iterations. See in color for better visualization.

initial cluster centers and to recursively subdivide their respective partitions (supports). AKM
imposes kd-trees on the cluster centers in each iteration in order to reduce the amount of neigh-
bors and hence the number of distance calculations. They also argue for a better quantization
as points that lie close to decision boundaries are treated more robust. At the end of the day,
we stick with MBKM, due to its simplicity and its fast and memory-saving execution.

21

2 Prerequisites and related work

2.4 Logistic Regression & Multiclass Logistic Regression

This Section introduces Logistic Regression and Multiclass Logistic Regression, which are basic
discriminative probabilistic classification models. The models are trained with gradient descent
or stochastic gradient descent. They serve us as building blocks for Feed-forward Neural Net-
works. Additionally, we use them as a baseline. This Section tightly follows Bishop [7] Sections
4.3.2. and 4.3.4..8

...
D1 Ф2

y(Ф)

Ф Ф ...
D1 Ф2

y

Ф Ф

a) Logistic Regression b) Multiclass Logistic Regression

y...(Ф)
1 K

(Ф)

w w1 wK

Figure 2.6: Graphical illustration of a) Logistic Regression model and b) Multiclass Logistic
Regression model.

Logistic Regression is a model from statistical learning for two-class classification with as
many learnable parameters (weights) as input elements, see also Figure 2.6. The input data is
denoted by X = (x1, . . . , xN), xn ∈ RD, it is transformed by a fixed function φn = φ(xn) before-
hand, e.g. by identity, linearly or non-linearly. The transformed inputs are called features. With
D weights w = (w1, . . . , wD), wi ∈ R, the Logistic Regression model predicts the probability of
class membership to the classes C1, C2 as follows:

p(C1|φ(xn)) = y(φn) = σ(wTφn) (2.11)

with σ(a) being the logistic sigmoid function:

σ(a) =
1

1 + exp(−a)
(2.12)

I.e. the dot product of feature and parameter vector is carried out - the so-called activation
- and afterwards passed through the sigmoid function - a so-called activation function. By
application of the logistic sigmoid function all defining attributes of a probability distribution
are guaranteed. Hence p(C2|φ(xn)) = 1− p(C1|φ(xn)) holds.
Logistic Regression is a supervised model. Thus, for inference we need class labels on the
training dataset, which are denoted by tn ∈ {0, 1} associated with each feature vector φn,
n = 1, . . . , N . Consider e.g. the 20 Newsgroups dataset, see Section 2.1.1. Select only entries

8We do not claim to sum it up any better than the Machine Learning Bible.

22

2 Prerequisites and related work

from two categories and use the word counts as input to the Logistic Regression. The target
values need to be encoded, e.g. ’0’ for ’comp.graphics’ and ’1’ for ’sci.med’. The likelihood that
the model predicts correct, given the parameters, is then:

p(t|w) =
N∏
n=1

ytnn (1− yn)1−tn (2.13)

with t = (t1, . . . , tN)T and yn = p(C1|φn). Now the question is how to determine the optimal
parameter vector w. Optimization is carried out using the so-called cross-entropy error function
- the negative logarithm of the likelihood function. This classic trick facilitates the optimization
while not changing the position of extremes:

E(w) = − ln(p(t|w)) = −
N∑
n=1

(tn ln yn + (1− tn)ln(1− yn)) (2.14)

with yn = σ(an) and an = wTφn. Finally, we seek a minimum of the cross entropy error function:

arg min
w

E(w) (2.15)

This can be achieved iteratively by (stochastic) gradient descent. Therefore, we need the gradient
of the cross entropy error function w.r.t. w:

∇E(w) =
N∑
n=1

δnφn (2.16)

with δn = yn − tn constituting the model output minus the actual target values. The detailed
gradient derivation can be found in Appendix C.2.

The Multiclass Logistic Regression extends the two-class model to several classes such that
one class out of several classes C1, . . . CK is chosen to be most likely, i.e. a 1-of-K coding scheme.
Therefore, the softmax function is used and the induced probability distribution becomes:

p(Ck|φ(X)) = yk(φ) =
exp(ak)∑
j exp(aj)

(2.17)

with activations aj = wT
k φ. Recognize that we have one parameter vector wk for each class K,

i.e. K times D weights in total. The derivative of the softmax function is

∂yk
∂aj

= yk(Ikj − yj) (2.18)

with Ikj being the elements of the identity matrix, see Appendix C.1. Using this model the 20
Newsgroups dataset example can be extended to its full 20 categories: one record corresponds

23

2 Prerequisites and related work

to exactly one category. The corresponding likelihood function is:

p(T |w1, . . . , wK) =
N∏
n=1

K∏
k=1

p(Ck|φn)tnk =
N∏
n=1

K∏
k=1

ytnknk (2.19)

with ynk = yk(φn) and T being an NxK matrix of the target variables with elements tnk. Anal-
ogous to two-class Logistic Regression the cross-entropy error function for Multiclass Logistic
Regression is the negative logarithm of the likelihood function:

E(w1, . . . , wK) = − ln p(T |w1, . . . , wK) = −
N∑
n=1

K∑
k=1

tnk ln ynk (2.20)

Again we seek a minimum to find optimal parameters wj :

arg min
wj

E(w1, . . . , wK) (2.21)

The gradient w.r.t. one parameter vector wj however, yields the same result as 2.16:

∇wjE(w1, . . . , wK) =
N∑
n=1

δnjφn (2.22)

with δnj = ynj − tnj , elaborately derived in Appendix C.2. Since the gradients of Logistic and
Multiclass Logistic Regression are of the form of Eq. B.3, training can be carried out using
batch-, online- or minibatch gradient descent.

2.5 Feed-forward Neural Networks & error backpropagation

This Section briefly introduces Artificial Neural Networks and training them with the well known
error backpropagation algorithm. In particular, we focus on fully connected Feed-forward Neu-
ral Networks arranged in homogeneous layers, with non-linear, continuous activation functions
and cross-entropy or sum-of-squares-error functions corresponding to sigmoidal and softmax or
identity output layers. A classical training algorithm for Artificial Neural Networks is (gradient
descent) error backpropagation - it is of particular interest, since Deep Belief Networks, a special
variant of Feed-forward Neural Networks, will be fine-tuned by application of this algorithm.
Extending the concepts of the previous Section, this Section again closely follows Bishop [7]
Chapter 5.

Artificial Neural Networks attempt to reconstruct neural processing in biological systems,
e.g. in the human brain Important contributions to the development of Artificial Neural Net-
works were submitted by McCulloch and Pitt [34], Rosenblatt [43] and Widroff and Hoff [59].
Biological neurons collect information through input connections (dendrites), accumulate it and
fire a signal through an output connection (axon) upon exceeding a certain threshold, cf. Figure
2.7 a). Moreover, axons and dendrites are connected by synapses such that multiple neurons
form a network of neurons.

24

2 Prerequisites and related work

Nowadays, Artificial Neural Networks are a broad and widely used family of supervised statisti-
cal learning models. In contrast to their complex biological role models they are mathematical
concepts and restricted in structure and time. An Artificial Neural Network consists of process-
ing units interconnected through weights corresponding to neurons in the human brain linked
by dendrites and axons. Weights (learnable parameters) along the links can be imagined as
synapses. The output of a processing unit is carried out by taking the weighted linear combina-
tion of all inputs and transforming it through an activation function as illustrated in Figure 2.7
b).

Cell Body

Axon
(Output Connection)

Dendrites
(Input Connections)

a) Biological Neuron b) Artificial Neuron

∑

Neuron aj

Input
Neurons

Output
Neurons

Synapse

Weights

Figure 2.7: Schematic illustration of Biological and Artificial Neurons. A Biological Neuron
gathers information through its input connections (dendrites), processes the infor-
mation in the cell body and emits information through its output connection (axon).
An Artificial Neuron comprises the same components and functionality on a math-
ematically formalized level: It collects information from input neurons, processes it
and outputs information to successive neurons.

A single neuron for two-class classification can be mathematically formalized and simulated by
Rosenblatt’s famous Perceptron [43]. Assume a dataset X and feature vectors φ(X) given
as defined in the previous Section 2.4. The Perceptron model is quite similar to the Logistic
Regression model. The linear combination of feature and weight vector is calculated and passed
through an activation function f :

y(x) = f(wTφn(x)) (2.23)

with f defined as follows, see also Figure 2.9:

f(a) =

{
+1, a ≥ 0
−1, a < 0

(2.24)

The differences are the usage of a discontinuous activation function instead of the continuous
sigmoid function, using ’-1’ and ’+1’ as class labels for C1, C2 instead of ’0’ and ’+1’ and introduc-

25

2 Prerequisites and related work

ing the concept of biases. 9 Compared to the Logistic Regression the bias adds another weight
w0. Therefore, the feature vector includes a component φn0(x) = 1. Hence, there are D + 1
learnable parameters in total. The bias weight, in geometric terms, translates the separating
hyperplane of the two classes in feature space. While there exists a celebrated training algorithm
for the Perceptron, we skip it, since ultimately we are interested in Deep Belief Networks and
their relationships to other models.

We consider here merely so-called Feed-forward Neural Networks. They are also called
’Multilayer Perceptron’. However, they are a composition of Logistic Regressions rather than a
composition of multiple Perceptrons. Yet, the here introduced bias concept is adopted.

x

W
(1)

W
(2)

1 x2 x3

...

...

...

x0 xDxD-1

z0 z1 z2z M

yKy1

Input Layer

Hidden Layer

Output Layer

Figure 2.8: Architecture of a layered Feed-forward Neural Network with two layers of weights.
Each circle represents a processing unit, i.e. an Artificial Neuron. Each connecting
line represents a weight. The arrow on the left indicates the data flow through the
network in forward direction.

Feed-forward Neural Networks are restricted in their structure: the data flows from input units
strictly towards output units without recurrences, i.e. representable by a directed acyclic graph
(DAG). Additionally, we organize the units only in homogeneous layers of neurons, i.e. equal
activation functions on one layer. As depicted in Figure 2.8, the processing units are arranged
in layers that are typically named input layer, hidden layer and output layer (of neurons). Note
that several hidden layers of neurons can be installed. We define the Neural Network in Fig-
ure 2.8 as a two-layer network, hence the number of layers equals the number of layers of weights.

The Neural Network in Figure 2.8 predicts the output as follows. The input data X, consider
e.g. again word counts extracted from the 20 Newsgroup dataset, cf. Section 2.1.1, is fed into
the first layer (input layer) of neurons. The activations aj for the hidden layer are calculated by

9The Logistic Regression models can be extended to employ bias parameters, too. However, it naturally fits the
discussion, here.

26

2 Prerequisites and related work

linearly combining the input data with the first layer of weights:

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 =

D∑
i=0

w
(1)
ji xi (2.25)

The superscript (1) indicates the first layer of weights. Recognize that the bias weight w(1)
j0 can

either be expressed explicitly or incorporated into the sum. The value of x0 of the input vector is
clamped to 1. The output of the hidden layer neurons is computed by passing these activations
through a transformation function h(1)(a):

zj = h(1)(aj) (2.26)

If h(1)(aj) = σ(aj), then this process equals the parallel execution of Logistic Regressions. The
output of the hidden layer neurons serves as input for the next layer. The second-layer activations
ak are carried out likewise:

ak =
M∑
j=1

w
(2)
kj xi + w

(2)
k0 =

D∑
j=0

w
(2)
kj xi (2.27)

with second layer bias weight w(2)
k0 . The model output is calculated by applying an output

activation function h(2)(ak) on the second layer activations:

yk = ak (2.28)

In sum, the ynk(xn,W) are calculated as follows:

ynk(xn,W) = h(2)

(
M∑
m=1

w
(2)
kj h

(1)

(
D∑
i=1

w
(1)
ji xni + w

(1)
j0

)
+ w

(2)
k0

)
(2.29)

= h(2)

(
M∑
m=0

w
(2)
kj h

(1)

(
D∑
i=0

w
(1)
ji xni

))
(2.30)

with x0 = 1, W = {W (1),W (2)} and activation functions h(1), h(2).

There exists a variety of possible activation functions for h(1), e.g. the Perceptron activation
function (also called Heaviside function) or sigmoidal functions like the logistic sigmoid function
(also called Fermi function) and hyperbolic tangent. In order to apply the error backpropagation
algorithm it will be wise to choose a continuously differentiable function, e.g. the hyperbolic
tangent (tanh), see also Eq. C.1 in the Appendix:

tanh(a) :=
exp(a)− exp(−a)
exp(a) + exp(−a)

;
∂tanh(a)

∂a
= 1− tanh2(a) (2.31)

Note that the sigmoid and tanh function are related: tanh(a) = 2σ(a)−1. However, the function
ranges differ: tanh : R →] − 1, 1[, but σ : R →]0, 1[. We usually stick with the logistic sigmoid
function, because it naturally fits standard Restricted Boltzmann Machines with binary ({0, 1})

27

2 Prerequisites and related work

8 6 4 2 0 2 4 6 8

1.0

0.5

0.0

0.5

1.0

b) Tangens Hyperbolicus

8 6 4 2 0 2 4 6 8

1.0

0.5

0.0

0.5

1.0

a) Logistic Sigmoid

8 6 4 2 0 2 4 6 8

1.0

0.5

0.0

0.5

1.0

c) Perceptron Activation Function

Figure 2.9: Typical activation functions for the hidden layer neurons in Artificial Neural
Networks.

distributed hidden and visible units, cf. Subsection 2.7.2.

For the output layer of neurons the choice of the activation function h(2) depends upon the choice
of the error function. Indeed, it is a general result that for a certain error function (assuming the
conditional distribution of the target variables p(t|η, s) is a member of the exponential family
distributions with natural parameters η) a corresponding ’canonical’ activation function exists:
a so-called canonical link function. This is a result from Generalized linear models, see Nelder
and Wedderburn [37].

Hence, for a sigmoidal output layer one uses the cross-entropy error function for Logistic Re-
gression, for a softmax output layer the cross-entropy error function for Multiclass Logistic
Regression and for the identity as output layer activation function a sum-of-squares error func-
tion. Even more interestingly, the gradient is always (up to a linear scaling factor 1

s) of the form
of Eq. B.3:

E(w) =
N∑
n=1

En(w) (2.32)

hence we are permitted to apply batch-, online- or minibatch-gradient descent. For Feed-forward
Neural Networks with an identity output layer, i.e. ynk = ank, the sum-of-squares error function
is utilized:

En(w) =
1
2
‖y(xn, w)− tn‖2 (2.33)

Training Feed-forward Neural Networks can be carried out using the famous error backprop-
agation algorithm introduced by Rumelhart et al. [45] in 1986. In contrast to e.g. Support
Vector Machines (SVM, a ’competing’ broad class of models for statistical inference) the op-
timization problem in Neural Networks is non-convex and consequently requires an iterative
learning procedure, typically gradient descent.

28

2 Prerequisites and related work

The error backpropagation algorithm comprises two stages. First, the input layer is fed with
the input data X = (x1, . . . , xD), xi ∈ R and the information is propagated forward through the
network along the lines connecting the processing units to calculate the model output ynk, e.g.
for a sigmoidal output layer using Eq. 2.29 . Secondly, the model error δ is propagated back-
wards - again along the connecting lines but in reverse direction - in order to update the weights.

Consider for the moment only a linear model with one layer of weights ynk =
∑

iwkixni, i.e. the
hidden layer of neurons in Figure 2.8 as input layer coupled with the output layer by weights
W (2). Then the gradient for each record in the dataset and with respect to a weight wki is

∇En(wki) =
∂

∂wki

1
2

N∑
n=1

‖y(zn,w)− tn‖2 = (y(zn,w)− tn)
∂

∂wki
y(zn,w) (2.34)

= (ynk − tnk)xni = δnkxni (2.35)

with
δnk := ynk − tnk (2.36)

being the model error, i.e. model output minus target variables.

If one now appends again a layer whose output is fed into this linear model, i.e. in total a
model equivalent to Figure 2.8, the gradient with respect to the, now last layer weights w(2)

ki , is
unchanged. The activations carried out by the first layer then become:

anj =
∑
i

w
(1)
ji zi (2.37)

and znj = h(1)(anj). Now the question is how to update the weights in front of the last layer
of weights. An answer to that is to propagate the model errors backwards through the Neural
Network.

δk

δ1

zj

zi δ j

wkjwji ...

Figure 2.10: Schematic illustration of the error backpropagation for a weight w(1)
ji in front of a

processing unit aj .

As illustrated in Figure 2.10 a weight w(1)
ji is only influenced by the summed input anj to unit

29

2 Prerequisites and related work

j in backwards direction. Thus, the chain rule can be applied:

∂En(w)

∂w
(1)
ji

=
∂En(w)
∂anj

∂anj
∂wji

= δnjzni (2.38)

For reasons of clarity and simplification it is useful to rename both factors of the derivative:
δnj := ∂En(w)

∂anj
and zni := ∂anj

∂w
(1)
ji

.

The first factor of the derivative, the δnj , comprises the ’error’, i.e. derivatives of all outgoing
connections that arise by application of the chain rule for partial derivatives:

δnj =
∂En(w)
∂anj

=
∑
k

∂En
∂ank

∂ank
∂anj

(2.39)

Ultimately, with the δnk given by Eq. 2.36 the backpropagation formula takes the form:

δnj =
∂

∂anj
h(1)(anj)

∑
k

w
(2)
kj δnk (2.40)

Finally, for the example with one hidden layer and an identity function output layer of neurons,
the gradients for the two weight layers amount to:

∂En

∂w
(1)
ji

= δnjxni,
∂En

∂w
(2)
kj

= δnkznj (2.41)

The extension to multiple hidden layers is discussed in the next Section.

2.6 Deep Belief Networks (DBN) & Deep Auto-Encoders (DAE)

Deep Belief Networks (DBNs) are special Feed-forward Neural Networks. In contrast to shal-
low networks with only one hidden layer, a Deep Belief Network has more than one hidden layer,
see Figure 2.11 b). The advantage of DBNs is that they can learn higher order correlations in a
compact form. While one can train them purely with the error backpropagation algorithm, this
usually ends up in poor performance. Bengio [6] e.g. suggests that with random initialization
error backpropagation gets quickly stuck in poor, nearby local optima.

An effective and efficient way to train Deep Belief Networks was proposed 2006 by Hinton et
al. [19], [17]. The idea is to pre-train a Deep Belief Network unsupervised with a stack of Re-
stricted Boltzmann Machines (RBM) using Contrastive Divergence learning, sketched in Figure
2.11 a) and afterwards using the result as initialization for the error backpropagation algorithm.
In this proceeding, error backpropagation constitutes fine-tuning of the Deep Belief Network.

Restricted Boltzmann Machines are discussed in detail in the next Section. We now generalize
Neural Networks and the error backpropagation formula to multiple hidden layers. The weights
obtain a superscript variable l in brackets numbering the weight layers, 1 being the weight layer
closest to the input neurons. Then for a general weight w(l)

ij in front of a unit aj the error

30

2 Prerequisites and related work

b) Pre-training with RBM Stacka) Deep Belief Network (DBN) c) Deep Auto-Encoder (DAE)

5000

2000

2000

500

500

20

RBM 1

RBM 2

RBM 3

5000

2000

500

20

5000

2000

500

20

5000

2000

500

Encoder

Decoder

Code layer

W

W

W

(1)

(2)

(3)

W(1)

W
(2)

W (3)
W (3)

W
(2)

W(1)

W(1) T

T

W
(2)

W (3)T

Figure 2.11: Schematical Illustration of a) Deep Belief Network, b) Greedy pre-training each
layer of a DBN with Contrastive Divergence learning of Restricted Boltzmann Ma-
chines and c) Deep Auto-Encoders that produce small codes on the code layer when
applying the input data on the input and output layers of the Deep Auto-Encoder;
rectangles represent a layer of neurons, the integer within the rectangles the amount
of neurons in the respective layer.

backpropagation rule becomes:

δnj =
∂

∂anj
h(l)(anj)

∑
k

w
(l+1)
kj δnk (2.42)

together with activations zj the derivative is:

∂En

∂w
(l)
ji

= δnjzni (2.43)

analogous to Equations 2.39 to 2.41 and Figure 2.10.

Another manifestation of Deep Belief Networks are Deep Auto-Encoders, presented by Hinton
and Salakhutdinov [17]. The idea is to add a flipped Deep Belief Network at the output layer of a
Deep Belief Network, as illustrated in Figure 2.11 c). Here, the input feature vectors are applied
at both ends of the Deep Auto-Encoder. This performs a dimensionality reduction from input to
code layer, since the high-dimensional input feature vectors are mapped to lower-dimensionality
code vectors. It can also be thought of as a hash function. Empirical investigations show that
often similar feature vectors are mapped to similar code vectors and vice versa dissimilar feature
vectors map to dissimilar code vectors, cf. Salakhutdinov and Hinton [46].

31

2 Prerequisites and related work

2.7 Restricted Boltzmann Machines (RBM) & Harmonium models

Restricted Boltzmann Machines (RBMs), introduced by Smolensky [53], are special Markov Ran-
dom Fields that form a two-layer architecture with nodes in one layer conditionally independent
from nodes in the other layer. Due to their two-layer architecture they can serve as building
blocks of a Deep Belief Network and thus to pre-train Deep Belief Networks unsupervised and
layer-wise with an algorithm called Contrastive Divergence (CD) presented by Hinton [18]. Sev-
eral stand-alone RBM models have been derived, also for information retrieval.
This Section first introduces the standard Restricted Boltzmann Machine, also called Harmo-
nium, using Bernoulli units. It has been extended by Welling et al. to support distributions
from the Exponential Family, so called Exponential Family Harmonium (EFH)) [58]. From this
point on, a chain of several distribution combinations has been explored with application in the
field of document retrieval: Undirected Probabilistic Latent Semantic Indexing by Hofmann [58],
Rate Adapting Poisson by Gehler et al. [15], Constrained Poisson [46] and Replicated Softmax
(RSM) [47] both presented by Salakhutdinov and Hinton. In particular, we put the spotlight
on the Replicated Softmax (RSM) model, which is to be used in our Neural Networks. Further-
more, this Section describes how the EFH model has been extended to support multiple different
exponential family member distributions on the visible layer, so-called Dual Wing Harmoniums
(DWH) by Xing et al. [62]. Last but not least, parts of Hinton’s practical guidelines for Con-
trastive Divergence training are recapitulated [16].

h

v

W

Figure 2.12: The general structure of a Restricted Boltzmann Machine can be represented by a
(fully) bipartite, undirected graph.

In 1986, Smolensky [53] presented harmony theory that introduces Restricted Boltzmann
Machines (Harmoniums). An undirected graph, with nodes representing random variables
and the links representing probabilistic relationships among the random variables, is called a
Markov Random Field (MRF), 10, see for example Bishop [7] Section 8.3. A RBM then can
be described by an undirected graph consisting of nodes organized in two layers: one layer of
so-called hidden random variables and one layer of so-called visible random variables that are
coupled by weights along the connecting lines, see Figure 2.12. The nodes are also called units.
Due to this (fully) bipartite structure, Restricted Boltzmann Machines are an undirected coun-
terpart to slices of a Deep Belief Network.

10They are called Markov Random Fields, as the undirected connections reflect that the Markov property, that
is conditional independence of one random variable given the others, is fulfilled.

32

2 Prerequisites and related work

Moreover, Restricted Boltzmann Machines are energy-based models, i.e. the joint probability
distribution over the random variables is of the form:

p(v, h) =
1
Z

exp(−E(v, h)) =
exp(−E(v, h))∑
ṽ,h̃ exp(−E(ṽ, h̃))

(2.44)

with E(h, v) being a so-called energy function. The so-called partition function Z :=
∑

ṽ,h̃ exp(−E(ṽ, h̃))
normalizes the exponential of the negative energies to a probability distribution by summing (or
integrating for continuous random variables) over all possible configurations, i.e. all possible val-
ues the random values can be assigned to. The energies are said to ’work in the log-probability
domain’, cf. Bengio [5] Section 5.1.

Using basic probability theory laws, the probability p(v) can be obtained by marginalizing out
h:

p(v) =
∑
ĥ

p(v, ĥ) =
∑
ĥ

exp(−E(v, ĥ))∑
ṽ

∑
h̃ exp(−E(ṽ, h̃))

(2.45)

The ansatz for the conditional probability distribution p(h|v) becomes:

p(h|v) =
p(v, h)
p(v)

=

exp(−E(v,h))∑
ṽ

∑
h̃ exp(−E(ṽ,h̃))∑

ĥ
exp(−E(v,ĥ))∑

ṽ

∑
h̃ exp(−E(ṽ,h̃))

=
exp(−E(v, h))∑
ĥ exp(−E(v, ĥ))

(2.46)

Equation 2.44 is a Boltzmann distribution, hence the name Restricted Boltzmann Machine. The
Boltzmann distribution stems from physics, where it describes the states of dynamical systems.
At least from an imagination point of view, low energies are desirable, e.g. water forms balls in
air since this shape has the lowest surface tension. Each possible configuration of the random
variables is assigned a scalar probability.11 Due to the negative sign in the exponential, states
with low energy are assigned a high probability. Learning, in a machine learning sense, then
equals reshaping the probability distribution into desirable forms, see Bengio [5]. In the case of
RBMs this means reconstructing the input data as good as possible.
In contrast to a General Boltzmann Machine the energy function of a standard Restricted
Boltzmann Machine takes the form of a first-order polynomial:

E(v, h,) = −vTWh− aTv − bTh (2.47)

where v, h correspond to the random variables in the nodes of the undirected graph, W is a
coupling matrix and a, b are bias variables. Each random variable has one bias variable attached
to it. The restriction compared to a General Boltzmann Machine can be thought of as to forbid
any links connecting hidden with hidden variables or visible/visible variable links. Again, Re-
stricted Boltzmann Machines correspond to (fully) bipartite graphs.

11for discrete random variables

33

2 Prerequisites and related work

2.7.1 Product of Experts (PoE) & Contrastive Divergence (CD)

In 2002 Hinton [18] presented an algorithm called Contrastive Divergence (CD) to train Prod-
uct of Expert (PoE) models. Since a standard Restricted Boltzmann Machine is a Product
of Experts model, to be shown later on, it can be trained with Contrastive Divergence. We use
Wood’s excellent derivation of CD. [61]

A PoE model combines individual experts by multiplication rather than by summation. Models
that use summation are called mixture models, e.g. Mixture of Gaussians. They are of the form:

p(X|θ1, . . . , θE) =
E∑
e=1

πep(X|θe) (2.48)

where the πe are mixing coefficients that ensure normalization to a probability distribution, i.e.∑E
e=1 πe = 1 must be satisfied. In contrast to that a PoE model, with E individual experts,

expresses the probability of the input data X with N records as follows:

p(X|θ1, . . . , θE) =
N∏
n=1

∏E
e=1 pe(xn|θe)∑
x̃

∏E
e=1 pe(x̃|θe)

(2.49)

where the denominator contains a summation of all possible configurations x̃ of the expert’s
random variables, which ensures normalization to a probability distribution. According to Hin-
ton, the advantage of a factorial distribution is that it is sharper. If one expert turns to zero,
then the overall probability becomes zero, thus the experts can focus on single constraints. The
classical idea for learning the model parameters would be the application of maximum likelihood
learning. Therefore, one needs to calculate the gradient w.r.t. the parameters of one expert θm
of the log likelihood:

∂

∂θm
log p(X|θ1, . . . , θE) =

∂

∂θm
log

N∏
n=1

∏E
e=1 pe(xn|θe)∑
x̃

∏E
e=1 pe(x̃|θe)

(2.50)

Using log(a ∗ b) = log(a) + log(b) it follows that:

∂ log
∏N
n=1 p(xn|θ1, . . . , θE)

∂θm
=
∂ log

∏N
n=1

∏E
e=1 pe(xn|θe)

∂θm
−
∂ log

∏N
n=1

∑
x̃

∏E
e=1 pe(x̃|θe)

∂θm
(2.51)

N∑
n=1

∂ log p(xn|θ1, . . . , θE)
∂θm

=
N∑
n=1

∂ log pm(xn|θm)
∂θm

−N
∂ log

∑
x̃

∏E
e=1 pe(x̃|θe)

∂θm
(2.52)

34

2 Prerequisites and related work

The last term of Eq. 2.52 can be reformulated as follows:

N
∂ log

∑
x̃

∏E
e=1 pe(x̃|θe)

∂θm
(2.53)

= N
1∑

x̃

∏E
e=1 pe(x̃|θe)

∂
∑

x̃

∏E
e=1 pe(x̃|θe)
∂θm

(2.54)

= N
1∑

x̃

∏E
e=1 pe(x̃|θe)

∑
x̃

E∏
e=1,e6=k

pe(x̃|θe)
∂pe(x̃|θm)
∂θm

(2.55)

= N
1∑

x̃

∏E
e=1 pe(x̃|θe)

∑
x̃

E∏
e=1

pe(x̃|θe)
∂ log pe(x̃|θm)

∂θm
(2.56)

= N
∑
x̃

p(x̃|θ1, . . . , θE)
∂ log pe(x̃|θm)

∂θm
(2.57)

= N
∑
x̃

p(x̃|θ1, . . . , θE)
∂ log pe(x̃|θm)

∂θm
(2.58)

using ∂p
∂x = p∂log p∂x . Inserted into Eq. 2.52 the log likelihood amounts to:

N∑
n=1

∂ log p(xn|θ1, . . . , θE)
∂θm

=
N∑
n=1

∂ log pm(xn|θm)
∂θm

−N
∑
x̃

p(x̃|θ1, . . . , θE)
∂ log pe(x̃|θm)

∂θm
(2.59)

Unfortunately, exact inference is not tractable due to the exponentially many possible configura-
tions of the partition function, the last term of Eq. 2.59. It can, though, be approximated using
Gibbs sampling. Gibbs sampling, a Markov Chain Monte Carlo method, see e.g. Bishop [7]
Section 11.2. to 11.3., or Resnik and Hardisty [42], is an algorithm to sample from complex
distributions. For the conditionally independent random variables it takes a particular simple
form. Nevertheless, running the Gibbs chain to an equilibrium state is still computationally
painful.

Here comes Contrastive Divergence into action. Assuming the input records to be i.i.d., Eq.
2.59 can be expressed solely in terms of expectations:

N
N∑
n=1

1
N

∂ log p(xn|θ1, . . . , θE)
∂θm

= N
N∑
n=1

1
N

∂ log pm(xn|θm)
∂θm

−N
∑
x̃

p(x̃|θ1, . . . , θE)
∂ log pe(x̃|θm)

∂θm

(2.60)

N

N∑
n=1

p0(xn)
∂ log p(xn|θ1, . . . , θE)

∂θm
= N

N∑
n=1

p0(xn)
∂ log pm(xn|θm)

∂θm
−N〈∂ log pe(x̃|θm)

∂θm
〉p∞

(2.61)〈
∂ log p∞θ
∂θm

〉
p0

=
〈
∂ log pm(xn|θm)

∂θm

〉
p0
−
〈
∂ log pe(x̃|θm)

∂θm

〉
p∞θ

(2.62)

35

2 Prerequisites and related work

where 〈f〉p :=
∑

x p(x)f(x) denotes an expectation of a function f(x) under a probability
distribution p(x). Additionally, p(xn|θ1, . . . , θE) is renamed as p∞x . Now, the first term on the
right hand side of Eq. 2.62 is an expectation with respect to the data distribution, whereas the
second term represents the model’s expectation. Since learning can be understood as reshaping
the PoE model’s parameters such that they model the data in ’the best possible’ way, the
expectation of the model shall approximate the expectation of the data distribution.
The log likelihood is intractable. Consequently, one seeks for another objective function. The
Kullback-Leibler divergence (KL) is a similarity-measure for two probability distributions p(x), q(x)
(see e.g. Bishop [7] Subsection 1.6.1.):

p
∣∣∣∣∣∣q := −

∑
x

p(x) log
q(x)
p(x)

(2.63)

An equivalent objective function to log likelihood is the KL divergence between p0 and p∞θ :

p0
∣∣∣∣∣∣p∞θ =

∑
x

log
p0(x)
p∞θ (x)

=
∑
x

p0(x) log p0(x)−
∑
x

p0(x) log p∞θ (x) (2.64)

= H(p0)−
〈
∂ log p∞θ (x)

∂θm

〉
p0

(2.65)

where H(x) = −
∑

x p(x) log p(x) is the entropy and does not depend on the model parameters
θ. Looking at the derivatives w.r.t. θm:

∂p0
∣∣∣∣∣∣p∞θ

∂θm
= −

〈
∂ log p∞θ (x)

∂θm

〉
p0

(2.66)

it follows that maximizing log likelihood and minimizing the Contrastive Divergence is equiva-
lent. Nevertheless, running the Gibbs chain to equilibrium for approximating p∞θ is still com-
putationally awful. Therefore, Contrastive Divergence minimizes yet another objective function
where p∞θ cancels out:

∂

∂θm

(
p0
∣∣∣∣∣∣p∞θ − pkθ ∣∣∣∣∣∣p∞θ) ∝ 〈∂ log pm(xn|θm)

∂θm

〉
p0
−
〈
∂ log pm(xn|θm)

∂θm

〉
pkθ

(2.67)

This process can also be thought of running the Gibbs chain only for k steps and this is indeed
computationally tractable and this is called k-step Contrastive Divergence, or just CD-k. As
Hinton showed empirically, few, often only 1 full Gibbs steps are sufficient. Note that for equiva-
lence, the chain rule for the k Gibbs steps needs to be taken into account, e.g. for CD-1 Eq. 2.67
misses the term ∂p1||p∞θ

∂p1
∂p1

∂θm
such that equality rather than proportionality is fulfilled. However,

Hinton asserts that this term is usually neglectable small. Also, the Contrastive Divergence
can never turn negative, since p1 is closer to the equilibrium state than p0. Additionally, he
argues, by running the Gibbs chain only for a few steps, it is less likely to swing off the real
data distribution, i.e. the parameter updates have lower variance. In summary, the k-step CD
algorithm involves two major ideas: start the Gibbs chain at the input data and run it only for

36

2 Prerequisites and related work

a few steps in order to calculate the parameter updates:

δθm ∝ εt

(〈
∂ log pm(xn|θm)

∂θm

〉
p0
−
〈
∂ log pm(xn|θm)

∂θm

〉
pk

)
(2.68)

with a learning rate εt chosen by the user, see also Figure 2.13.

...

CD-1 CD-2Initialization

1 full Gibbs step 1 full Gibbs step

v0

h0

v1

h1

v2

h2

Figure 2.13: Contrastive Divergence starts the Gibbs chain at the data and runs it only for a
few steps. A full Gibbs step is to sample from both layers successively.

Now, if for RBM models in the following Subsections the hidden variables are conditionally
independent given the visible variables and vice versa, CD learning can be applied. Hence,
a major point of interest is to show conditional independence for the following models. Last
but not least, as Hinton [18] proposed, the k-step CD algorithm can be implemented using
minibatches.

2.7.2 Standard RBM

In 1986, Smolensky [53] modeled a cognitive system. He called the hidden variables ’knowledge
atoms’ and the visible variables ’representational features’. However, the representational fea-
tures could assume the values ’1’ for present, ’0’ for unspecified and ’-1’ for absent. In 1994,
Freund and Haussler [14] introduced the so-called influence combination machine. They adopted
Smolensky’s RBM, but omitted the unspecified state. Thus, with ’-1’ and ’+1’ for visible units
and ’0’ and ’+1’ for hidden units only., i.e. using Bernoulli distributions. Moreover, they showed
that in this setting, hidden variables factorize conditionally independent given the visible vari-
ables and vice versa. In 2002 Hinton introduced Contrastive Divergence learning for Product
of Expert [18] models and applied it to train Restricted Boltzmann Machines with Bernoulli
random variables on both layers - however using the values ’0’ and ’1’, to which we will stick,
too. See Figure 2.14 for a graphical illustration.

The energy function of a standard Restricted Boltzmann Machine then is of the form:

E(v, h) = −
N∑
i=1

M∑
j=1

viWijhj −
N∑
i=1

aivi −
M∑
j=1

bihi (2.69)

= −vTWh− aTv − bTh (2.70)

37

2 Prerequisites and related work

h1 h2 h3 hF
...

v1 v2 v3 v4 v5 vD
...

Standard Restricted Boltzmann Machine (RBM)

Hidden units h :
Bernoulli-distributed,
binary values

Visible units v :
Bernoulli-distributed,
binary values

i

j

Figure 2.14: Architecture of a standard Restricted Boltzmann Machine.

with visible units vector v = (v1, . . . , vD) , vi ∈ {0, 1}, hidden units vector h = (h1, . . . , hF) , hj ∈
{0, 1}, bias vector for the visible units a = (a1, . . . , aD) , ai ∈ R, bias vector for the hidden units
b = (b1, . . . , bF) , bi ∈ R and Wij ∈ R being the coupling weight matrix.
As shown in appendix C.3, when using this energy function, the hidden variables factorize
indeed conditionally independent, given the visible variables, and obey (conditional) Bernoulli
distributions:

p(v|h) =
N∏
i=1

p(vi|h) =
N∏
i=1

Bern

σ
 M∑
j=1

Wijhj + ai

 (2.71)

Vice versa:

p(h|v) =
M∏
j=1

p(hj |v) =
M∏
j=1

Bern

(
σ

(
N∑
i=1

Wijvi + bj

))
(2.72)

Additionally, sampling from the random variables is as easy as to calculate the conditional
probabilities and to perform ’less than’ operations:

p(vi = 1|h) = σ

 M∑
j=1

Wijhj + ai

 ; p(hj = 1|v) = σ

(
N∑
i=1

Wijvi + bj

)
(2.73)

In order to learn the weights one feeds the standard RBM model’s visible vectors with the
input data xn and performs CD-k learning. From inserting ∂E(v,h)

∂wij
= −vihj , ∂E(v,h)

∂W = −vhT

respectively, into Eq. 2.68 the learning rule amounts to:

δW ∝ εt

(〈
∂ log pm(xn|W)

∂W

〉
p0
−
〈
∂ log pm(xn|W)

∂W

〉
pk

)
(2.74)

= εt

(〈
vhT

〉
p0
−
〈
vhT

〉
pk

)
(2.75)

38

2 Prerequisites and related work

For the biases, the update rules amount to:

δa ∝ εt
(
〈v〉p0 − 〈v〉pk

)
; δb ∝ εt

(
〈h〉p0 − 〈h〉pk

)
(2.76)

Since the model is symmetric, it is also very easy to use more than one full Gibbs step, explored
by Salakhutdinov and Murray [48].

2.7.3 Exponential Family Harmonium (EFH)

In 2005, Welling et al. extended the standard RBM to use any member of the exponential family
for the hidden and visible random variables, the so-called Exponential Family Harmonium [58].
See Figure 2.15 for an overview.

h1 h2 h3 hF
...

v1 v2 v3 v4 v5 vD
...

Exponential Family Harmonium (EFH)

Hidden units h :
Exponential Family member distributed,
discrete or continious values

Visible units v :
Exponential Family member
distributed,
discrete or continious values

j

i

Figure 2.15: Architecture of a general Exponential Family Harmonium.

To appreciate this, assume one member of the exponential family for the visible variables and
combine D many multiplicatively:

p({vi}) =
D∏
i=1

ri(vi) exp

(∑
a

θiafia(vi)−Ai({θia})

)
(2.77)

with Ai the log-partition function, fia(vi) the sufficient statistics and θia the natural parameters,
see e.g. Bishop [7] Section 2.4. and vice versa one member of the exponential family for the
hidden variables and combine F many multiplicatively:

p({hj}) =
F∏
j=1

sj(hj) exp

(∑
b

λjbgjb(hj)−Bj({λjb})

)
(2.78)

with Bj the log-partition function, gjb(hj) the sufficient statistics and λjb the natural parameters.
If these are combined consistently in an energy function with a coupling matrix W jb

ia as follows:

E(v, h) = −
∑
ia

θiafia(vi)−
∑
jb

λjbgjb(hj)−
∑
ijab

W jb
ia fia(vi)gjb(hj) (2.79)

39

2 Prerequisites and related work

then, the hidden variables given the visible factorize conditionally independent:

p(h|v) =
D∏
i=1

exp

(∑
a

θ̂iafia(vi)−A({θ̂ia})

)
(2.80)

which likewise holds for the visible given the hidden variables. See Appendix C.4 for the deriva-
tion. Note that it might be necessary to restrict W jb

ia , e.g. W jb
ia ≥ 0 for some combinations of

exponential family distributions in order to guarantee p(v, h) is normalizable. This opens up for
a wide variety of different derived EFH models and again they can be trained using (minibatch)
k-step CD-k. Members of the exponential family are among others the Bernoulli, Binomial,
Multinomial, Gaussian, Poisson, Exponential, Dirichlet, Beta and Weibull distributions.

2.7.4 Undirected Probabilistic Latent Semantic Indexing (UP-LSI)

Welling et al. also proposed a first application of the EFH model for document retrieval - a
derived standalone model called UP-LSI.12 They model an undirected counterpart to the well
known directed information retrieval models Probabilistic Latent Semantic Indexing (pLSI) by
Hofmann [20] and Latent Dirichlet Allocation (LDA) by Blei et al. [8]. See Figure 2.16 for a
quick overview on the UP-LSI model.

h1 h2 h3 hF
...

v1 v2 v3 v4 v5 vD
...

Undirected Probabilistic Latent Semantic Indexing (UP-LSI)

Hidden units h :
Gaussian-distributed,
continious values

Visible units v :
Multinomial-distributed,
binary values (softmax)

j

i

Figure 2.16: Architecture of the Undirected Probabilistic Latent Semantic Indexing Topic for
topic retrieval.

The hidden units are chosen to be unit-variance Gaussians in order to model continuous latent
topics:

p(h|v) =
F∏
j=1

N

(∑
ia

W j
iavia, 1

)
(2.81)

Multinomial distributions, using the softmax function (1-of-K coding scheme) for the visible
variables, model the input data, which are discrete word-counts (via indicates keyword i was

12the name UP-LSI stems from Gehler et al. [15]

40

2 Prerequisites and related work

observed a times):

p(v|h) =
D∏
i=1

S

αia +
∑
j

W j
iahj

 (2.82)

where α is the bias vector for the visible units. The authors point out another interesting
aspect, namely that their model is a generalization of factor analysis into undirected models on
the discrete domain. Indeed, Marks and Movellan [33] showed that a diffusion network, i.e. an
EFH with Gaussian visible and hidden units is equivalent to a factor analysis.

2.7.5 Rate Adapting Poisson (RAP)

Gehler et al. [15] picked up on the idea of EFH and UP-LSI and introduced the Rate Adapting
Poisson model for information retrieval. In contrast to UP-LSI, they model the word counts with
conditional Poisson distributions for the visible units. Moreover, the hidden units representing
latent topics, are modeled with conditional Binomial distributions. See Figure 2.17 for a short
overview of the model.

h1 h2 h3 hF
...

v1 v2 v3 v4 v5 vD
...

Rate Adapting Poisson (RAP)

Hidden units h :
Bernoulli-distributed,
binary values

Visible units v :
Poisson-distributed,
non-negative integer values

j

i

Figure 2.17: Architecture of the Rate Adapting Poisson model for information retrieval (and
object recognition).

Here, the energy function is given by:

E(v, h) = −
∑
i

[log(λi)vi + log(vi!)] (2.83)

−
∑
j

[
log
(

pj
1− pj

)
+ log(hj !) + log((Mj − hj)!)

]
−
∑
i,j

vihjWij (2.84)

with Mj being the total number of samples and pj the probability of success for topic j. λi
denotes the mean rate for the conditional Poisson distribution of word i. Given the energy
function the visible and hidden conditional distributions factorize to:

p(v|h) =
D∏
i=1

Poisvi

exp

log(λi) +
F∑
j=1

Wijhj

 (2.85)

41

2 Prerequisites and related work

13 and:

p(h|v) =
F∏
j=1

Binhj

(
σ

(
log
(

pj
1− pj

)
+

D∑
i=1

Wijvi

)
,Mj

)
(2.86)

Due to the shifting of the parameters performed in Equations 2.85 and 2.86, the model is named
rate adapting. The RAP model reduces the amount of parameters in comparison to the UP-LSI
model. This is due to using single weight matrix Wij rather than ’multiple matrices’ W j

ia with
j indexing matrices and by using Poisson rates instead of a Multinomial distributions.

2.7.6 Constrained Poisson Model (CP) & Semantic Hashing (SH)

Salakhutdinov and Hinton [46] carried on the idea of the Rate Adapting Poisson model and
introduced the Constrained Poisson model for information retrieval. First, the hidden variables
are Bernoulli distributed units, i.e. a latent topic is either on or off. Secondly, the visible
units are still Poisson distributed, but for reasons of numerical stability the Poisson rates, i.e.
visible variables given the hidden variables are multiplied by the factor N∑

k exp(λk+
∑
j hjWkj)

where

N =
∑

i vi is the total number of words in the document (i.e. the document length). See Figure
2.18 for a graphical overview of the model. The corresponding energy function is given by:

h1 h2 h3 hF
...

v1 v2 v3 v4 v5 vD
...

Constrained Poisson (CP)

Hidden units h :
Bernoulli-distributed,
binary values

Visible units v :
(Constrained-)Poisson-distributed

j

i

Figure 2.18: Architecture of the Constrained Poisson model.

E(v, h) = −
∑
i

λivi −
∑
i

log(vi!)−
∑
j

bjhj −
∑
i,j

vihjWij (2.87)

where the λi represent the bias of the conditional Poisson distribution for word i and bj is the
bias for topic j. Consequently, the conditional distributions factorize as follows:

p(h|v) = Bernσ

((
bj +

∑
i

Wijvi

))
(2.88)

13This Equation is correct!

42

2 Prerequisites and related work

and

p(vi = n|h) = Pois

(
n,

exp(λi +
∑

j hjWij)∑
k exp(λk +

∑
j hjWkj)

N

)
(2.89)

with Pois(n, λ) = e−λλn/n! and the factor N∑
k exp(λk+

∑
j hjWkj

is multiplicatively added. The
denominator improves upon numerical stability. The Poisson rates are scaled by N to document
length,

∑
i λi = N . This is an important aspect, since it makes the model capable of dealing

with documents of different lengths.

Additionally, Salakhutdinov introduced in the same paper the idea of Semantic Hashing,
which is put shortly to train a Deep Auto-Encoder (layers with 2000-500-500-128/20 hidden
units) with a Constrained Poisson model input layer. As described in Section 2.6 this performs
a dimensionality reduction from the word counts of documents as input to codes of small size
(selectable by the user). The authors also empirically showed that this method acts like a
hashing, i.e. similar documents end up in similar codes and dissimilar ones do not. Due to
this it is called Semantic Hashing. Document retrieval can be efficiently carried out using e.g.
Hamming distances between the binary codes.

2.7.7 Replicated Softmax (RSM)

The Replicated Softmax (RSM) model has been presented by Salakhutdinov and Hinton [47],
too. This model for information retrieval takes word counts as input and models them with one
Multinomial visible unit together with binary latent topic hidden units. A great advantage of
this model is the capability to deal with documents of different lengths by scaling the hidden
variables biases.

To start, consider the following energy function for one document with D keywords represented
by a binary dictionary matrix V k

i ∈ {0, 1}, indicating word i is keyword k together with coupling
weight tensor W k

ij and F hidden units:

E(V, h) = −
D∑
i=1

F∑
j=1

K∑
k=1

hjW
k
ijV

k
i −

D∑
i=1

K∑
k=1

V k
i a

k
i −

F∑
j=1

hjbj (2.90)

= −
K∑
k=1

hTW kV k −
(
ak
)T
V k − hTb (2.91)

For this energy function, it holds that the conditional distribution for the visible variables given
the hidden units factorizes and sampling is executed using:

p(V k
i = 1|h) =

exp(aki +
∑F

j=1 hjW
k
ij)∑K

q=1 exp(aqi +
∑F

j=1 hjW
q
ij)

(2.92)

which is the softmax function with aki +
∑F

j=1 hjW
k
ij as argument. It defines the appropriate

1-of-K coding scheme. See Appendix C.5 for the derivation. The hidden units model binary

43

2 Prerequisites and related work

latent topics, i.e. are conditional Bernoulli distributed and sampling is carried out as follows:

p(hj = 1|V) = σ

(
bj +

D∑
i=1

K∑
k=1

W k
ijV

k
i

)
(2.93)

Now, if one clamps the weights for all i to be equal, i.e. the weight tensor is reduced to a weight
matrix - the authors call this weight sharing, then the model can be significantly simplified.
Since the weights are equal, we can sum up over V k

i horizontally and the binary keyword indi-
cator variables end up in word counts, see Figure 2.19 for an illustration. In other words, by
using weight sharing a new Restricted Boltzmann Machine arises with only one visible unit with
a Multinomial distribution that is sampled D times, hence takes word counts as input rather
than binary keyword indicator variables.

h1 h2 hF
...

v1 v2 v3 vD
...

h1 h2 hF
...

v^

k=1

k=2

k=3...

k=K

1

1

1

1
1

1

1

1

0

0

0

0

0

0

0

0

3

1

2

2

w1 w1

w1 w2
wF

w1 w1

w2 w2
w2w2

wF

wF

wF

...

Hidden units h :
Bernoulli-distributed,
binary values

Visible units V :
Bernoulli-distributed,
binary values

i

j Hidden units h :
Bernoulli-distributed,
binary values

j

k Visible unit V :
Multinomial-distributed,
sampled D times,
non-negative,
integer values

k^

Figure 2.19: Weight sharing in the Replicated Softmax model: weights wkij are restricted to wkj
and the binary dictionary matrix V k

i is aggregated to V̂ k by summation, resulting
in a word counts vector for each document. See in color for better visualization.

Note that the notation in Eq. 2.90 sticks to the original proposition by Salakhutdinov. However,
the weight sharing is not visibly reflected. It becomes clearer, if either one introduces additional
constraints W k

ij = W k
ĩj
∀i, ĩ, j, k or one removes the index i from W . The latter one being less

redundant and more elegant, of course.

The new RBM takes the V̂ k =
∑D

i=1 V
k
i as input and is now an RBM with a ’single’ weight

matrix W k
j instead of i many weight matrices. The energy function now assumes the form:

E(V̂ , h) = −
F∑
j=1

K∑
k=1

hjW
k
j V̂

k −
K∑
k=1

V̂ kak −D
F∑
j=1

hjbj (2.94)

44

2 Prerequisites and related work

h1 h2 h3 hF
...

v1 v2 v3 v4 v5 vK...

Replicated Softmax (RSM)

Hidden units h :
Bernoulli-distributed,
binary values

Visible units v :
Multinomial-distributed,
binary values (softmax)

j

k

Figure 2.20: Architecture of the Replicated Softmax model. See in color for better visualization.

For this new energy function sampling is achieved by:

p(hj = 1|V̂) = σ

(
Dbj +

K∑
k=1

W k
j V̂

k

)
(2.95)

and

p(V̂ k = 1|h) =
exp

(
ak +

∑F
j=1 hjW

k
j

)
∑K

q=1 exp
(
aq +

∑F
j=1 hjW

q
j

) (2.96)

where V̂ k is sampled from D times. This is called the Replicated Softmax (RSM) model by
the authors and can also be interpreted as K (keywords many) Restricted Boltzmann Machines
that share the hidden units, see also Figure 2.20. Note that the biases for the hidden variables
are multiplied by D, i.e. the document length. Due to this scaling, it is easy to cope with
documents of different lengths. Of course, Contrastive Divergence learning can be applied to
train this model.

It is also of interest, how this model differs from the Constraint Poisson model. One difference is
where the scaling to document length takes place: the Constrained Poisson model scales the Pois-
son rates, whereas the Replicated Softmax model scales the hidden biases. The other difference
is sampling: Given one uses sampling for the training, then the Replicated Softmax samples D
times from one multinomial variable. In contrast to that the Constrained Poisson model samples
from keywords many different Poisson distributions. Therefore, the Replicated Softmax model
is guaranteed to sample the correct number of keywords in the document, whereas the Con-
strained Poisson model guarantees this solely in expectancy value.14 However, as Salakhutdinov
and Hinton already state, except for the sampling and scaling the two models are equivalent.

14Email Communication with Jan Schlüter. Thanks!

45

2 Prerequisites and related work

2.7.8 Dual Wing Harmonium (DWH)

The EFH model was extended by Xing et al. [62] to support two different members of the
exponential family on the visible layer, i.e. two wings of input units, as illustrated in Figure
2.21. They call this model Dual Wing Harmonium (DWH) and use it for video classification.

h1 h2 h3 hF
...

v1 v2 v m1 m2 mE
...

Dual Wing Harmonium (DWH)

Hidden units h :
Exponential Family member distributed,
discrete or continious values

Visible units v :
Exponential Family member
distributed,
discrete or continious values

...D

i Visible units m :
Exponential Family member
distributed,
discrete or continious values

l

j

Figure 2.21: Architecture of a general Dual Wing Harmonium.

The energy function of the DWH is a straightforward extension of EFH’s energy function:

E(v,m, h) ∝ exp

(∑
ia

fia(vi) +
∑
lb

ηlbgjb(ml) +
∑
jc

λjcejc(hj) (2.97)

+
∑
iajc

W jc
ia fia(xi)ejc(hj) +

∑
ljbc

U jclb glb(ml)ejc(hj)

)
(2.98)

with two coupling matrices W jc
ia and U jclb , as well as two types of visible random variables vi and

ml. Analogous to the EFH, model the fia(vi), gjb(ml) and ejc(hj) are the sufficient statistics of
v, z and h. With Ai, Bl and Cj being the log-partition functions and θia, ηlb and λjc being the
natural parameters, the conditional distributions factorize as follows:

p(v|h) =
p(v, h)
p(h)

∝
D∏
i=1

exp

(∑
a

θ̂iafia(vi)−Ai
(
{θ̂ia}

))
(2.99)

with θ̂ia = θia +
∑

jcW
jc
ia ejc(hj).

p(m|h) =
p(m,h)
p(h)

∝
E∏
l=1

exp

(∑
b

η̂lbflb(ml)−Bl ({η̂lb})

)
(2.100)

with η̂lb = ηlb +
∑

jc U
jc
lb ejc(hj).

p(h|v,m) =
p(v,m, h)
p(v,m)

∝
F∏
j=1

exp

(∑
c

λ̂jcfjc(hj)− Cj
(
{λ̂jc}

))
(2.101)

with λ̂jc = λjc +W jc
ia fia(xi) + U jclb glb(ml).

46

2 Prerequisites and related work

The proof that this model factorizes into conditionally independent terms is straightforward,
since the energy-function simply combines the two different types of variables additively. Conse-
quently, CD learning is applicable by simply performing CD learning as usual, but sequentially
for the two types of visible units.

a) Xing, Yan, Hauptmann
 (Video Classification)

b) Yang, Yan, Liu, Xing
 (Video Classification)

c) Zhang, Chow, Rahman
 (Document Retrieval)

Hidden Units
for latent topics:

Visible Units
Conditional

Distributions:

Binomial

Bernoulli
(TCF-Features)

Poisson
(TF-Features)

unit variance
Gaussian

Bernoulli
(Dictionary)

unit-variance
Gaussian

(Color-Histogram)

unit variance
Gaussian

Poisson
(Word-Counts)

Gaussian
(Color-Histogram)

Figure 2.22: Different derived Dual Wing Harmonium models for video classification and docu-
ment retrieval.

Xing et al. [62] use color-histograms extracted from video data modeling one wing of Gaussian
visible units (learned variance), as well as annotation data, in particular word-counts w.r.t. a pre-
defined dictionary on the other wing, modeled with conditional Poisson distributions. Finally,
the hidden variables represent the influence of different latent topics, modeled by unit-variance
Gaussian units.

Yang et al. [63] use a very similar approach as Xing et al., but use Bernoulli units for modeling
the annotation data, which represents the presence or absence of pre-defined keywords. Addi-
tionally, they extend their DWH by adding another layer for classification on top of the DWH
and call this Hierarchical Harmonium.

Zhang et al. [65] pick up on the idea of the DWH and used it for information retrieval, where
they use tf and tcf features of documents, i.e. one wing is fed with the common term frequency
feature (tf, i.e. word counts) modeled by Poisson rates. Additionally the second wing is fed
with what they call term connection frequency (tcf) modeled with Bernoulli units. The tcf
feature is an attempt to model the neighborhood relationships of keywords in the documents, i.e.
relaxing the bag-of-word assumption. The hidden variables - representing the latent topics - are
modeled with conditional Binomial distributions. Figure 2.22 gives an overview of the different
applications of derived Dual Wing Harmoniums.

2.7.9 Practical issues of Contrastive Divergence learning

Hinton [16] presented several guidelines for training Restricted Boltzmann Machines with Con-
trastive Divergence. Instead of real sampling, sometimes the unit probabilities are employed in
CD-k learning in order to reduce sampling noise. For binary units with CD-1, however, Hinton
strongly suggests to use samples rather than unit probabilities.

47

2 Prerequisites and related work

Hinton also suggest to initialize the weight matrix by drawing samples from a zero-mean Gaussian
random variable with standard deviation 0.01. The hidden variables biases should be initialized
with 0 or a high negative value e.g. −4, where the latter case is a way to encourage sparse
hidden activities. Hinton asserts (for the standard RBM), it is often helpful to initialize the
visible units biases with log(ri/(1− ri)), where ri is the frequency of visible unit i being on. It
is also possible to transform the input to the log-domain by applying the input transformation
log(1 + vi), used e.g. by Salakhutdinov and Hinton [47].

For classification, the minibatch size should be about the number of target classes (e.g. 10)
and each minibatch should contain a record from each class. The learning rate should be cho-
sen such that the weight updates have magnitudes about 102 to 104 smaller than the weights.
However, if non-binary units are involved, the learning rate should be chosen smaller to fight
numerical stability issues, e.g. for Binomial units and especially for Gaussian units. One is
also advised to divide the learning rate by the size of the minibatch, and therewith making the
learning rate independent of the minibatch size. The momentum rate, cf. Appendix B, is ad-
vised to initially start with a value of 0.5 and over training progression slowly increases up to 0.9.

The learning can be monitored using the reconstruction error. However it is a proxy and not
necessarily a good measure of performance. Therefore, Hinton suggests to use it carefully.

48

3 Own work

This Chapter covers our work, in particular the experiments using Neural Networks with Repli-
cated Softmax input layers, modified error backpropagation and the DualRSM model. For
convenient description of the experiments, we introduce the following abbreviations:

• RSM: Replicated Softmax layer

• RBM: Restricted Boltzmann Machine layer

• SIG: Multiple Logistic Regressions output layer

• SM: softmax output layer

• NN: standard Feed-forward Neural Network

• BP: error backpropagation

• K: dictionary size

• H: number of hidden units

• E: number of epochs

• L: learning rate

• M: momentum rate

• MBS: minibatch size

Throughout all experiments, Contrastive Divergence and error backpropagation use an effective
learning rate calculated as learning rate divided by minibatch size. For all Tables presenting
classification rates, either the percentage of correctly classified documents or (mean) Average
Precision rates, the rates were cut off after 4 decimal digits. Note that equivalent RSM models
are only trained once and weights resulting from a varying amount of pre-training epochs are
obtained from one single pre-training run.

3.1 Evaluation of the Replicated Softmax model for document
retrieval on the 20 Newsgroups dataset

In this Section, we attempt to reproduce the document retrieval results from the original Repli-
cated Softmax (RSM) paper presented by Salakhutdinov and Hinton [47] on the 20 Newsgroups
dataset. We choose this dataset, since the authors present recall precision curves for it, as well
as its corpus size is comparably small but sufficient for our purposes. Additionally to building a

49

3 Own work

Records Minimum Maximum Average Standard Deviation
Train 11314 5 12305 85.16 278.98
Test 7531 2 3387 75.47 131.86
Total 18845 2 12305 81.29 231.72

Table 3.1: 20 Newsgroups dataset statistics: number of Usenet articles and to the right of the
double line minimum, maximum, mean and standard deviation of the amount of
keywords present using a dictionary of the K = 1998 most frequent words.

dictionary based on the 2000 most frequent words like the authors, we can report significantly
better results on a dictionary computed by highest information gain.

We use a setting similar to the original paper by Salakhutdinov and Hinton. The first step is to
derive a dictionary from the 18845 Usenet articles collected in the 20 Newsgroups corpus. The
information gain (Infogain) calculates how much information a word provides for classifying
the respective document correctly. Thus, the words contributing most (highest information gain)
are selected as dictionary keywords, see Manning et al. [32] for a detailed explanation. Using
Rainbow 1 one can select those K keywords with the highest information gain or those that
occur at least C times, i.e. selecting the 2000 most frequent words as keywords is not directly
possible. Additionally, common stop-words like ’the’, ’we’ or ’that’ are easily removed and sim-
ilar words reduced to the same root word (stemming) - a common preprocessing in information
retrieval. Selecting words that occur at least C = 246 times as keywords results in a dictionary
of size K = 2006 and choosing C = 247 leads to a dictionary size of K = 1998.

The 6 most frequent words in the 2006 keywords dictionary are ’ax’ (62551), ’subject’ (20379),
’lines’ (19673), ’organization’ (18708), ’writes’ (13344) and ’article’ (12275) with occurrence
counts denoted in brackets. The large occurrence of the term ’ax’ results from one Usenet en-
try containing a picture encoded in ASCII. However, by application of the ’–append-to-stoplist’
command line switch, the 6 most frequent words can be removed from the dictionary of size
K = 2006, thus resulting in a dictionary of size K = 2000. This might appear as a minor tech-
nical detail at first glance, but due to the dramatic gap of maximal occurrence counts: 625551
versus 9966 this has a strong impact on the training process of the Replicated Softmax model.
Nevertheless, the authors report statistics (mean document length of approximately 50 keywords
along with a standard deviation estimate of about 70), which we are not able to reproduce, cf.
Table 3.2 and Table 3.1. Even repeated removal of most frequent words (that contribute most
to the highest values to mean and standard deviation) does not lead to the reported results.

Despite being unable to employ equivalent dictionaries as the authors, our recall precision
curves (RPCs) reinforce their results. The RPCs are calculated with the following definition of
recall and precision:

recall =
#correctly retrieved documents
#relevant documents in corpus

(3.1)

1http://www.cs.umass.edu/~mccallum/bow/rainbow/

50

http://www.cs.umass.edu/~mccallum/bow/rainbow/

3 Own work

Occurrences K = 2000 Infogain K = 2000
Min Max Avg StD Min Max Avg StD

Train 2 3162 75.278 148.697 2 2748 61.730 108.561
Test 0 3419 71.085 131.497 0 2935 59.891 103.116
Total 0 3419 73.602 142.084 0 2935 60.995 106.420

Table 3.2: 20 Newsgroups word counts statistics: keyword statistics for dictionaries built by
selecting the 2000 most frequent words or those 2000 words with highest information
gain.

0 500 1000 1500 2000
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
e
a
n
 r

e
co

n
st

ru
ct

io
n
 e

rr
o
r

RSM Occurances K2000 H50 E2000 L0.001
RSM Occurances K2000 H50 E2000 L0.0005
RSM Occurances K1998 H50 E2000 L0.0001 *)
RSM Infogain K2000 H50 E2000 L0.001

Figure 3.1: Mean reconstruction error by epochs. *) indicates a scaling along the vertical axis of
the curve for convenient qualitative comparison (multiplied with 0.35). See in color
for better visualization.

precision =
#correctly retrieved documents

#retrieved documents
(3.2)

as defined e.g. by Gehler et al. [15].

Analogue to Salakhutdinov and Hinton we use a query record from the test set to retrieve similar
documents from the train set, where similarity is carried out through the cosine similarity
measure that is defined for two vectors ui and uj as follows:

sim(ui, uj) =
uiu

T
j

‖ui‖‖uj‖
(3.3)

see e.g. Manning et al. [32]. The labels are merely used to verify correctness of the model
output, i.e. documents are similar, when they stem from the same class and for each test query
we only receive the single most similar train document.

51

3 Own work

The authors do not report the learning rates they used, but they report to use 100,000 parameter
updates for this dataset with a minibatch size of 100. We also do not apply the input transfor-
mation log(1+wi) on word count wi that is reported by the authors to give slightly better results.

The following experiments mainly attempt to find reasonable values for the hyperparameters
of the RSM training, in particular learning rate and number of training epochs for the three
different dictionaries described above. In this Section, we use a minibatch size of 100 and a
constant momentum rate of 0.9. Weight matrix and both biases are initialized by drawing from
a Gaussian distribution and multiplying the samples with 0.001. Moreover, we first permute the
train records and then select as many as possible such that the total number of training records
is dividable by the minibatch size without remainder.

Experiment 3.1.1: Learning rate.
Looking already forward to the Deep Belief Networks, we would like to know a reasonable
learning rate and the amount of epochs to train the RSM input layer. For all input data, the
learning rate needs to be below or equal to a value of 0.001 such that the reconstruction error (a
proxy only, sure) drops smoothly over the complete training phase. As displayed in Figure 3.1 a
learning rate of 0.001 works best for the information gain dictionary. For the most frequent oc-
currences dictionaries, a learning rate of 0.001 is still a bit aggressive, but leads for the K = 1998
dictionary to results comparable to the authors after approximately 140, 000 parameter updates,
see Figure 3.4 for the K = 1998 recall precision curve.

Experiment 3.1.2: Number of training epochs.
For a fixed learning rate of 0.001, Figure 3.2 shows that the number of epochs the RSM is trained
has crucial impact on the quality of the results. For the K = 2000 most frequent words dic-
tionary the best results are obtained after 750 to 1250 training epochs, whereas for the highest
information gain dictionary, the best result emerges after 500 training epochs.

Experiment 3.1.3: Robustness of the recall precision curves.
An important question is how robust these results for document retrieval are. Therefore, we
trained 4 RSM models with the same parameter configuration. As Figure 3.3 illustrates, the
recall precision curves vary strongly to the left of a recall value of 10−2, but are rather stable
right to it. Nevertheless, there is one outlier that departs for about 6% at the recall value of
10−2.

Experiment 3.1.4: Dictionaries based on most frequent words versus highest infor-
mation gain.
Figure 3.4 shows that RSM models trained on the dictionary based on K = 2000 keywords
selected by highest information gain outperform the dictionary based on the K = 2000 most
frequent words for up to 40%. The dictionary based on information gain outperforms the dic-
tionary based on most frequent occurrences with K = 1998 keywords for up to 5 to 10%, but
was trained for only 500 epochs rather than 2000. We do not have an explanation why the
K = 1998 most frequent words dictionary performs so much better than the K = 2000 most
frequent words dictionary.

52

3 Own work

10-5 10-4 10-3 10-2 10-1 100

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

RSM Occurances K2000 H50 L0.001

E500
E750
E1000
E1250
E1500
E2000

10-5 10-4 10-3 10-2 10-1 100

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

RSM Infogain K2000 H50 L0.001

E100
E250
E500
E750
E1000
E1500

Figure 3.2: Recall precision curves for a varying number of epochs for a dictionary based on a)
the 2000 most frequent words and b) on the 2000 words with highest information
gain. The relevant part of the graph is at and to the right of the recall value 10−2.

Experiment 3.1.5: Permuted dictionaries.
Due to the conditional independence of the visible random variables a permuted dictionary
should not lead to qualitatively different results and the two recall precision curves (indicated
by *) in Figure 3.4 confirms this. Hence, the two curves also serve as another test for robustness
and reinforce the results of Experiment 3.1.3.

3.2 Neural Networks with Replicated Softmax input layers, modified
error backpropagation and training details

A Deep Belief Network usually contains Restricted Boltzmann Machine layers as building blocks.
However, depending on the desired output, a softmax (1-of-K coding scheme), logistic sigmoids
(multiple binary classification) or identity output layer can be employed. Likewise, a RSM model
can constitute the input layer and the hidden units output is fed into the succeeding layers. First,
the RSM layer is pre-trained as described in Subsection 2.7.7. Secondly, the error backpropa-

53

3 Own work

10-5 10-4 10-3 10-2 10-1 100

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

RSM Occurances K2000 H50 E1000 L0.001
RSM Occurances K2000 H50 E1000 L0.001
RSM Occurances K2000 H50 E1000 L0.001
RSM Occurances K2000 H50 E1000 L0.001

Figure 3.3: Evaluation of the robustness of the results by training four equivalent RSM mod-
els. The recall precision curves vary strongly left to a recall of 10−2 Note that the
initialization of the weights is non-deterministic.

gation forward pass is carried out by calculating the hidden unit probabilities according to Eq.
2.95. Thirdly, the error backpropagation rule for the RSM layer needs to be modified, due to the
scaling of the hidden biases by the document length D. This can be thought of by clamping units
x0 in Figure 2.8 to values D instead of 1. We call this the modified error backpropagation
algorithm. Moreover, due to the scaling of the hidden biases, training a RSM model requires
usually a pre-training learning rate of about 10−2 to 10−4 smaller than for a normal RBM. This
also applies to the error backpropagation algorithm if a RSM layer is involved. The problem is
worse for a logistic sigmoids output layer than for a softmax output layer. Because of the small
learning rate, the RSM model needs to be pre-trained for a comparably large amount of epochs.

While the implementation for training a standard Restricted Boltzmann Machine and error
backpropagation in a Neural Network is easily parallelized on the GPU using Gnumpy [54], my
parallelized implementation of the Replicated Softmax model is slower than my CPU implemen-

54

3 Own work

10-5 10-4 10-3 10-2 10-1 100

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

RSM Occurances K2000 H50 E750 L0.001
RSM Occurances K2000 H50 E1000 L0.001
RSM Occurances K2000 H50 E1250 L0.001
RSM Occurances K2000 H50 E2000 L0.001
RSM Occurances K2000 H50 E1000 L0.0005
RSM Occurances K2000 H50 E1500 L0.0005
RSM Occurances K1998 H50 E2000 L0.0001
RSM Occurances K2000 H50 E1000 L0.001 *)
RSM Infogain K2000 K50 E500 L0.001
RSM Infogain K2000 H50 E1500 L0.001
RSM Infogain K2000 H50 E500 L0.001 *)

Figure 3.4: Comparison of the recall precision curves obtained from different dictionaries and
different training hyperparameters, *) indicates a permuted dictionary. Top per-
formers are the dictionaries based on K = 1998 most frequent words and highest
information gain (K = 2000), trained for E = 2000 and E = 500 epochs.

tation, due to the sampling from the multinomial random variable. It would require a parallel
version of cumulative sum in Cudamat [36], which Gnumpy is based on, or any other efficiently
parallelized version of sampling from multinomial variables.

3.3 Document classification using Neural Networks with Replicated
Softmax input layers on the 20 Newsgroups dataset

This Section covers the training of Neural Networks with a Replicated Softmax input and soft-
max output layers, in order to carry out classification on two different dictionaries: the K = 2000
most frequent words and the K = 2000 words selected by highest information gain, as described
in Section 3.1. The ground truth data is used for modified error backpropagation in the Neural
Network after unsupervised pre-training of the layers and for the identification of true positives.
There are many hyperparameters for a Neural Network and the following experiments attempt
to find reasonable values, e.g. learning rates, number of hidden values and number of weight
layers. Analogue to Section 3.1, the dictionary based on highest information gain outperforms
the dictionary based on the most frequent words. Throughout this Section, the RSM layer is
pre-trained with a minibatch size of 128 and a constant momentum rate of 0.9. For all Exper-

55

3 Own work

Occurrences K = 2000, SM.E20
RSM.H \RSM.L, RSM.E 0.0001, 1000 0.0005, 1000 0.0005, 2000
256 75.39 (134) 75.64 (68) 75.90 (158)
512 75.24 (133) 76.33 (197) 76.44 (188)
1024 74.15 (234) 76.49 (110) 76.50 (233)
2048 75.45 (143) 75.91 (248) 76.57 (68)
Occurrences K = 2000, SM.E50
RSM.H \RSM.L, RSM.E 0.0001, 1000 0.0005, 1000 0.0005, 2000
256 75.30 (240) 75.56 (149) 75.88 (121)
512 75.61 (199) 76.25 (237) 76.17 (95)
1024 74.91 (150) 76.01 (219) 76.89 (133)
2048 75.86 (166) 76.27 (56) 76.60 (197)

Table 3.3: Classification rates for a RSM->SM model using the K = 2000 most frequent
words dictionary for different learning rates of the RSM layer (RSM.L), varying
number of epochs for the RSM layer (RSM.E) and the softmax output layer (SM.E)
and various number of hidden units (RSM.H). The integers in brackets indicate the
error backpropagation early stopping epoch.

iments, 250 modified error backpropagation epochs were carried out and the one epoch having
the best result on the test set selected (early stopping). The RSM weights are initialized as
described in Section 3.1.

Experiment 3.3.1: RSM->SM models.
In this first Experiment, we train a simple Neural Network with a RSM input layer and a suc-
cessive softmax output layer. Both layers are pre-trained and subsequently the complete model
is fine-tuned using error backpropagation (see Section 3.2 for details on how to adapt the error
backpropagation algorithm to cope with RSM input layers). Here the parameters of interest
are the learning rate and the number of epochs for pre-training the RSM layer, the number of
hidden units, the number of pre-training epochs for the softmax output layer and the number
of error backpropagation epochs.

Table 3.3 presents the results on the dictionary based on the K = 2000 most frequent words and
Table 3.4 for the dictionary based on the K = 2000 keywords selected by highest information
gain. In general, training a network with a softmax output layer is quite robust. Hence, train-
ing the RSM longer, with a slightly aggressive learning rate and more hidden units typically
gives better results. However, as expected the softmax output layer should only be trained for
about 20 to 30 epochs, such that the error backpropagation algorithm does not get stuck in
poor local optima. With an error backpropagation learning rate of 0.05 fine-tuning for up to
200 epochs and applying early stopping proves useful. For the occurrences dictionary, the RSM
learning rate of 0.0005 is quite aggressive in contrast to the information gain dictionary where
it is much less aggressive as the error backpropagation starts on the latter on a much higher level.

56

3 Own work

Infogain K = 2000 SM.E20
RSM.H \RSM.L, RSM.E 0.0001, 500 0.0005, 500 0.0005, 1000
256 77.92 (248) 79.63 (119) 79.76 (211)
512 78.13 (231) 79.26 (132) 80.34 (189)
1024 78.16 (107) 79.10 (221) 78.82 (246)
2048 77.84 (213) 78.58 (58) 79.83 (178)
Infogain K = 2000, SM.E50
RSM.H \RSM.L, RSM.E 0.0001, 500 0.0005, 500 0.0005, 1000
256 78.00 (163) 79.60 (239) 79.35 (221)
512 78.46 (239) 79.41 (123) 79.00 (102)
1024 78.12 (198) 79.20 (212) 79.86 (81)
2048 77.08 (131) 78.71 (161) 79.8087 (75)

Table 3.4: Classification rates for a RSM->SM model using the highest information gain
dictionary of size K = 2000 for different learning rates of the RSM layer (RSM.L),
varying number of epochs for the RSM layer (RSM.E) and the softmax output layer
(SM.E) and various number of hidden units (RSM.H). The integers in brackets indi-
cate the error backpropagation early stopping epoch.

Occurrences
RBM.E RBM.H256, RSM.H256 RBM.H2048, RSM.H2048
50 76.14 (146) 77.27 (232)
100 76.57 (243) 77.03 (110)
150 76.15 (182) 77.58 (154)
200 76.60 (182) 76.40 (216)
250 76.58 (116) 77.43 (243)
300 75.82 (249) 77.31 (241)

Table 3.5: Classification rates for a RSM->RBM->SM model using the K = 2000 most
frequent words dictionary for a varying amount of RBM layer pre-training epochs
(RBM.E) for a very small RSM and RBM layer, as wells as for very large RSM
and RBM layers. The integers in brackets indicate the error backpropagation early
stopping epoch.

Experiment 3.3.2: RSM->RBM->SM models and training epochs.
Here, we train a model with one RBM layer in between the Replicated Softmax input layer
and the softmax output layer that is pre-trained with a standard RBM. We tried to determine
a suitable number of pre-training epochs for the RBM layer first. As Table 3.5 shows for the
occurrences dictionary, the impact of the number of epochs is low, hence we choose RBM.E=100
epochs in combination with a learning rate of RBM.L=0.1.

An important question is how many hidden units the RSM and RBM layer in a RSM->RBM-
>SM model should have, since this directly affects the expressional power of each layer. Tables
3.6 and 3.7 indicate the expected result that more hidden units provide better results, i.e. the
lower triangle along the counter-diagonal yields in general better results than the upper triangle.

57

3 Own work

Occurrences (SM.E20, L.0005, E2000)
RSM.H \RBM.H 256 512 1024 2048 4096
256 75.83 (84) 76.21 (122) 76.13 (170) 76.71 (142) 76.05 (142)
512 76.48 (172) 76.64 (154) 76.62 (242) 76.85 (146) 76.25 (249)
1024 77.00 (217) 76.95 (235) 76.60 (227) 77.27 (145) 77.20 (151)
2048 77.15 (170) 76.45 (248) 76.98 (147) 76.85 (76) 77.34 (206)

Table 3.6: Classification rates for RSM->RBM->SM models with differently sized RSM
and RBM layers on the K = 2000 most frequent words dictionary. The integers
in brackets indicate the error backpropagation early stopping epoch.

The results indicate that one RBM layer can improve the classification results for about one or
two percent.

Infogain (SM.E20, BP.L0.0005, E1000)
RSM.H \RBM.H 256 512 1024 2048 4096
256 79.53 (106) 79.91 (241) 79.66 (207) 80.10 (223) 79.93 (148)
512 80.41 (227) 80.50 (131) 80.73 (146) 80.42 (198) 80.67 (197)
1024 80.63 (178) 80.45 (228) 80.92 (199) 80.77 (105) 81.30 (166)
2048 80.30 (235) 80.44 (174) 80.71 (197) 81.19 (116) 80.54 (177)

Table 3.7: Classification rates for RSM->RBM->SM models with differently sized RSM
and RBM layers on the dictionary bases selected by highest information gain.
The integers in brackets indicate the error backpropagation early stopping epoch.

Experiment 3.3.3: Deep Belief Networks of varying depth.
A Deep Belief Network is usually capable of detecting higher order correlations. Therefore,
we tried to train Deep Belief Networks with RSM input layers, SM output layers and multiple
RBM layers. However, as Tables 3.8 and 3.9 show, multiple hidden layers do not improve upon
classification performance.

Occurrences (SM.E20, RBM.H1024)
RSM.H \RBM layers 2 3 4
256 76.09 (104) 76.03 (153) 76.34 (163)
512 76.54 (235) 76.02 (107) 75.17 (248)
1024 76.44 (140) 76.38 (236) 75.29 (223)
2048 76.85 (244) 76.65 (249) 75.39 (178)

Table 3.8: Classification rates on the most frequent words dictionary for a varying amount
of hidden layers. The integers in brackets indicate the error backpropagation early
stopping epoch.

Each hidden layer has equivalent many hidden units of the same size as the respective RSM
input layer’s hidden units. All RBM layers are trained for 100 epochs with learning rate 0.1.

58

3 Own work

Infogain (SM.E20, RBM.H1024)
RSM.H \RBM layers 2 3 4
256 79.28 (140) 79.40 (292) 79.04 (300)
512 79.74 (176) 80.03 (183) 79.62 (269)
1024 80.17 (255) 80.75 (299) 79.63 (348)
2048 79.64 (149) 79.90 (312) 79.94 (195)

Table 3.9: Classification rates on the dictionary based on the highest information gain for a
varying amount of hidden layers. The integers in brackets indicate the error
backpropagation early stopping epoch.

Experiment 3.3.4: Other variants of Deep Belief Networks.
We tried to train a Deep Belief Network with one large hidden layer followed by layers with
deceasing many hidden units, in particular the following model:
RSM.H1024->RBM.H4096->RBM.H1024->RBM.H256->SM.C20
However, this topology does not provide a better classification rate for the information gain
dictionary with 80.23% in error backpropagation epoch 167.
Another option is to increase the number of hidden units for only one RBM layer:
RSM.H2048->RBM.6144->SM.C20
While increasing the number of hidden units often leads to better classification rates, cf. Exper-
iment 3.2.2, utilizing 6144 hidden units cannot further improve upon this behavior. The result
for this model on the information gain dictionary is 80.87% in error backpropagation epoch 160.

Moreover, we perform document classification analogue to the experiments in Tables 3.3 and 3.6
using the K = 1998 most frequent words dictionary with the RSM model trained for 2000 epochs
with learning rate 0.0001. All results vary at most about 1% with the best absolute classification
rate being 76.56% in modified error backpropagation epoch 249. In all experiments the modified
error backpropagation is able to improve upon classification performance. The large number of
2000 pre-training epochs of the RSM model thus seems not sufficient for the classification setting.

In summary, the dictionary based on the K = 2000 words with highest information gain outper-
forms the dictionary based on K = 1998 and K = 2000 most frequent words for about 5%, which
is consistent with the results of Section 3.1. Furthermore, in the case of a 1-of-K coding scheme,
longer training, more hidden units and adding one RBM layer can slightly improve the classifi-
cation results for about one to two percent. Lacoste-Julien et al. [26] report a misclassification
rate of 25% on the 20 Newsgroups dataset with standard LDA and a misclassification rate of
20% using DiscLDA. Therefore, the RSM->SM model on the most frequent words dictionary is
competitive to standard LDA and the RSM->SM model using a dictionary seleceted by highest
information gain is competitive to the DiscLDA model.

3.4 Extraction of visual words and visual word counts

The first step in our image object classification pipeline is to obtain visual words. This first
step is already crucial and low quality feature points and descriptors can lead to poor results.

59

3 Own work

We experimented with Lowe’s original SIFT [29] implementation, VLFeat2 by Vedaldi [56] and
SIFT++, also authored by Vedaldi. Figure 3.5 illustrates that different SIFT implementations
result in strongly varying descriptors and amounts of descriptors. Vedaldi’s VLFeat was ac-
cessed by the provided binary as well as through a python wrapper, however, both return a lot
of descriptors covering - for the human eye - non-interesting aspects of the respective images.
In contrast to that Lowe’s implementation (hard coded parameters) and SIFT++ with default
parameters seem to provide reasonable results. We tried to obtain more distinctive descriptors
by passing non-default threshold (set to 0.019) and edge-threshold (set to 4.0) parameters to
SIFT++.

An interesting observation is depicted in Table 3.10, in particular that SIFT++ returns about
twice as many descriptors in total than Lowe’s SIFT implementation. The idea of the custom
parameters for SIFT++ was to obtain less, but higher quality descriptors and indeed only de-
livers half the amount of descriptors than Lowe’s SIFT implementation.

Moreover, we tried to collect descriptors using PCA-SIFT by Ke and Sukthankar [24]. The
PCA-SIFT (k=36) implementation provided by the authors is shipped without an interest point
detector. First, we tried to feed PCA-SIFT with the keypoints detected by SIFT++. Unfortu-
nately, many resulting descriptors are broken, in detail: all 36 resulting elements contain ’inf’.
Using keypoints detected by Lowe’s implementation this problem diminishes, yet for another to
arise: About 60 images in both, train and test set, PCA-SIFT ends up in a segmentation fault.
Therefore, we removed those images and the respective targets for the remainder of our pipeline.

Descriptors Min Max Avg StD

SIFT++ default
Train 6188387 3 5241 1234.96 17.65
Test 6080382 9 4882 1227.86 17.41

Lowe SIFT
Train 4380138 3 4185 874.10 17.82
Test 4325806 10 4449 873.54 17.59

SIFT++ T0.019
E4

Train 2268042 2 3078 452.61 15.52
Test 2242542 3 3186 452.94 15.64

Table 3.10: SIFT descriptor statistics obtained by different SIFT implementations and
parameters.

The next step in the pipeline is to quantize the visual words into visual word counts. The 6
million SIFT descriptors gathered by the SIFT++ implementation on the training set barely
fit into 8GB main memory, hence we collect 3 million SIFT descriptors from randomly chosen
training images and then subsample 1 million descriptors, as performed similarly e.g. by Zhou
et al. [66]. Next, we apply the Mini-batch k-Means algorithm on the one million subsampled
descriptors. The distance calculation within a minibatch is easily parallelized on the GPU which
greatly improves upon calculation time (about one hour computation time).
The true error is very expensive to calculate. Therefore, we observe a proxy error that is calcu-
lated easily along training: the mean Euclidean distance of all selected descriptors of a minibatch

2http://www.vlfeat.org

60

http://www.vlfeat.org

3 Own work

Figure 3.5: Visualization of all SIFT descriptors (counts below image) on different selected im-
ages, SIFT implementations (Lowe, Vedaldi’s VLFeat binary, VLFeat python wrap-
per and SIFT++) and parameters (SIFT++ with default parameters and with
threshold and edge-threshold parameters set to 0.019 and 4.0). See in color for
better visualization. 61

3 Own work

0 1000 2000 3000 4000 5000
Iterations

0.22

0.24

0.26

0.28

0.30

0.32
M

e
a
n
 p

ro
x
y
 e

rr
o
r

K512
K1024
K2048
K4096

Figure 3.6: Progress of the mean Euclidean distance for different dictionary sizes K of all selected
descriptors of a minibatch to their respective cluster centers (mean proxy error)
over the first 5000 iterations of the Mini-batch k-Means algorithm run on the
SIFT descriptors obtained with SIFT++ without kmeans++ initialization. See in
color for better visualization.

to their respective cluster centers. As shown in Figure 3.6 the error decreases most in the first
500 iterations. We found that for our pipeline that 1000 iterations are not fully sufficient, but
10.000 or 50.0000 iterations do not lead to any significant difference. In the following 10.000
iterations are used.

We use a minibatch size of 1000 here. Eventually, a larger minibatch size could lead to better
overall results of the pipeline. Jan Schlüter suggested to use a minibatch size eight times larger
than the dictionary size.3

We also tried an initialization of Mini-batch k-Means with kmeans++ (MBKM++). The
proxy error appears slightly lower in the first 400 iterations, but leads to a bit worse absolute
results in the overall pipeline and without parallelization is very costly in our pipeline.

3.5 Evaluation of Neural Networks with Replicated Softmax input
layers on visual word counts

Given the visual word counts carried out in the previous Section 3.4, we now perform multil-
abel image object classification by training Neural Networks with a Replicated Softmax input
and sigmoidal output layers (RSM->SIG). Replicated Softmax and sigmoidal layers are pre-
trained and afterwards the merged model is fine-tuned afterwards using modified error back-
propagation. The sigmoidal layer is a regular Feed-forward Neural Network layer with sigmoid
activation functions and as many output units as target classes to predict. The output of a

3E-Mail communication with Jan Schlüter, thanks!

62

3 Own work

\RSM. K512, H512 K1024, H1024 K2048, H2048 K4096, H4096
SIG tf 14.96 (920) 15.00 (987) 14.90 (912) 15.04 (997)
NN tf-idf 13.48 (194) 22.21 (58) 23.87 (277) 22.18 (484)
NN tf 27.16 (34) 26.13 (19) 25.14 (249) 23.76 (497)
RSM.E100 29.04 (250) 29.34 (196) 28.42 (240) 27.29 (250)
RSM.E250 30.69 (35) 31.81 (17) 31.66 (69) 30.37 (136)
RSM.E400 30.36 (217) 32.26 (0) 31.91 (126) 31.39 (0)
RSM.E500 30.59 (6) 32.18 (0) 31.77 (117) 31.53 (0)
RSM.E750 30.22 (33) 31.61 (10) 31.59 (127) 31.35 (0)
RSM.E1000 30.17 (2) 31.30 (6) 30.89 (145) 30.21 (0)

Table 3.11: Mean Average Precision classification rates on visual word counts obtained by
Lowe’s SIFT implementation and Mini-batch k-Means.

neuron in the sigmoidal layer is treated as the ’confidence’ of the model that an object is present
in an image, as described in the PASCAL VOC 2007 Documentation. The result is evaluated
using class Average Precision (AP), i.e. for each class recall and precision are calculated
and the area under the recall precision curve is computed.4 The final score mean Average
Precision (mAP) is the non-weighted mean of all per-class Average Precision values. We do
not remove visual stop words, since the results of Jiang et al. [21] suggest that the removal of
visual stop words does not improve the performance in the bag-of-visual-words framework. It
might however lead to a more efficient pipeline with only slightly less performance.

Throughout this Section we use a minibatch size MBS = 128 and we train the Replicated Soft-
max layers with a constant momentum rate of 0.9 for varying amounts of epochs with learning
rate 0.0001. This small learning rate is necessary for smooth learning in terms of the recon-
struction error. The sigmoidal output layers are pre-trained for 30 epochs with learning rate
0.1. The RSM weights are initialized as described in Section 3.1. All RSM-based models are
fine-tuned using modified error backpropagation for 250 epochs and the best result on the test
set is selected (early stopping epoch denoted in brackets).

We baseline against standard Feed-forward Neural Networks with sigmoidal output layers,
trained solely with standard error backpropagation and fed with visual word counts (tf) and
tf-idf values, the latter one stemming from document retrieval. The term frequency (tfk,i) equals
the visual word counts. The document frequency (dfk) counts the number of documents in the
corpus where keyword k is present. The inverse document frequency then is:

idfk = log
D

dfk
(3.4)

where D is the total number of documents, i.e. words occurring in many documents are furnished
with smaller weights. Afterwards, the tf-idf values are combined as the product of document-

4Documentation and development kit code: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/

VOCdevkit_08-Jun-2007.tar, VOCdevkit/devkit doc.pdf, VOCdevkit/VOCcode/VOCevalcls.m

63

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/VOCdevkit_08-Jun-2007.tar

3 Own work

wide idf and document-specific tf values:

tf-idfk,i = tfk,i · idfk (3.5)

for keyword k and document i, see e.g. Manning et al. [32].

Experiment 3.5.1: RSM->SIG models on visual word counts obtained using differ-
ent SIFT implementations and descriptors.
After experimenting a bit with all the hyperparameters in our pipeline we found that like-
wise to the classification task on the 20 Newsgroups dataset, the number of epochs the RSM
layer is pre-trained, is crucial (for a fixed learning rate). Tables 3.11 to 3.14 now present
the mAP classification rates for two-layer Neural Networks on different SIFT descriptors, ob-
tained by Lowe’s original SIFT implementation, PCA-SIFT(36) (from Lowe SIFT keypoints)
and SIFT++ with default parameters, as well as SIFT++ with threshold and edge-threshold
parameters set to 0.019 and 4.0. On each subsampled descriptor set we performed a cluster-
ing with K = 512, 1024, 2048, 4096 cluster centers with Mini-batch k-Means, in this Experiment
without kmeans++ initialization. The corresponding RSM input layer has as many hidden units
as cluster centers.
In this Experiment, the RSM-SIG models are fine-tuned with a learning rate of 0.0001 for 512
cluster centers and 0.00001 for the others.

The standard Feed-forward Neural Network (NN) is solely trained with standard error back-
propagation for 500 epochs with learning rate 0.1 and equivalent to the RSM->SIG model fed
with tf and tf-idf values. Moreover, we trained a single sigmoidal layer (SIG) directly fed with
tf values and trained for 1000 epochs with learning rate 0.1.

Clearly, the number of pre-training epochs of the RSM layer has a strong impact. Usually, there
is a number of pre-training epochs, where the modified error backpropagation algorithm can
easily improve upon. After some more pre-training epochs, the best results are obtained directly
after pre-training (indicated by early stopping epoch 0 in brackets, i.e. modified error backprop-
agation cannot improve upon pre-training). From that point on error backpropagation takes
much more epochs to improve upon pre-training (if at all), i.e. the modified error backpropaga-
tion algorithm first has to rewind parts of the pre-training. However, if no pre-training is used
at all, then the modified error backpropagation algorithm is very capable of improving the clas-
sification results over training progression, but of course does not reach the results reported here.

Interestingly, the SIFT implementation returning the largest number of descriptors performs
best, while using descriptors obtained by custom SIFT++ parameters or PCA-SIFT(36) (where
information is dropped) lead to quantitatively worse results. We observed that the modified er-
ror backpropagation algorithm does not perform as stable as in the softmax output layer case in
Section 3.3. However, in my experience recall precision curves often have robustness problems.
Also note that similar to Jiang et al. [21] using tf-idf values, the results are better for larger
dictionaries than for smaller dictionaries.

64

3 Own work

\RSM. K512, H512 K1024, H1024 K2048, H2048 K4096, H4096
SIG tf 14.00 (603) 13.53 (996) 15.10 (923) 15.09 (844)
NN tf-idf 13.94 (167) 19.69 (96) 22.82 (104) 21.37 (495)
NN tf 25.52 (31) 24.22 (32) 24.56 (108) 22.74 (500)
RSM.E100 26.83 (250) 26.29 (149) 25.46 (250) 24.53 (197)
RSM.E250 28.61 (241) 29.34 (134) 29.12 (144) 27.40 (112)
RSM.E400 28.51 (7) 29.65 (0) 30.94 (0) 28.78 (239)
RSM.E500 28.43 (229) 29.53 (22) 30.56 (0) 29.12 (250)
RSM.E750 28.35 (249) 29.41 (250) 29.49 (0) 29.48 (0)
RSM.E1000 28.45 (97) 28.99 (233) 28.71 (0) 28.91 (179)

Table 3.12: Mean Average Precision classification rates on visual word counts resulting from Ke
and Sukthankar PCA-SIFT(36) on keypoints detected by Lowe’s SIFT implemen-
tation and Mini-batch k-Means.

\RSM. K512, H512 K1024, H1024 K2048, H2048 K4096, H4096
SIG tf 13.70 (296) 14.27 (476) 14.21 (691) 14.39 (978)
NN tf-idf 20.05 (72) 22.86 (48) 22.57 (96) 20.31 (477)
NN tf 24.44 (32) 23.67 (30) 23.47 (495) 21.94 (410)
RSM.E100 24.09 (249) 21.39 (250) 21.23 (250) 19.16 (250)
RSM.E250 26.59 (15) 25.53 (193) 24.73 (250) 22.49 (250)
RSM.E400 27.58 (0) 26.20 (227) 26.84 (63) 25.01 (250)
RSM.E500 27.67 (0) 26.62 (3) 27.04 (81) 26.25 (244)
RSM.E750 27.92 (6) 27.33 (41) 27.46 (0) 26.39 (0)
RSM.E1000 28.03 (0) 27.72 (51) 27.46 (106) 27.44 (0)
RSM.E1250 27.74 (8) 27.77 (250) 27.49 (25) 27.28 (0)
RSM.E1500 27.72 (6) 27.86 (240) 27.61 (0) 27.58 (0)
RSM.E1750 27.77 (9) 27.41 (91) 27.25 (0) 27.46 (0)
RSM.E2000 27.97 (2) 27.45 (34) 27.33 (0) 26.88 (0)

Table 3.13: Mean Average Precision classification rates on visual word counts obtained by
SIFT++ with threshold and edge-threshold parameters set to 0.019 and
4.0 and Mini-batch k-Means.

65

3 Own work

Experiment 3.5.2: RSM->SIG models on visual word counts gathered by SIFT++
with default parameters and Mini-batch k-Means initialized with kmeans++.
We choose SIFT++ with default parameters as best performer in the previous experiment and
the single change here is to initialize Mini-batch k-Means with kmeans++ (MBKM++). Table
3.15 shows that the results are comparable. The results may be slightly more stable, neverthe-
less, we do not use it here in succeeding experiments, because without parallelization kmeans++
costs a lot of computation time.

Table 3.16 displays the class Average Precisions for the top performers of each Table so far
(Tables 3.11 to 3.15).5 It is very interesting that each SIFT implementation can perform very
well at at least for one object class, except for PCA-SIFT, which actually really removes in-
formation from the descriptors. Worthwhile to note is the very good performance for the class
potted plant using SIFT++ with custom parameters. Nevertheless, SIFT++ with default pa-
rameters performs best in terms of mAP in both cases: with or without kmeans++ initialization.

Experiment 3.5.3: Varying the number of hidden units in the RSM layer in RSM-
>SIG models on visual word counts gathered by SIFT++ with default parameters.
Table 3.17 shows the results for the different amount of cluster centers together with a RSM
layer with 2028 hidden units. In comparison with Table 3.14, more RSM layer hidden units than
cluster centers do perform slightly worse, but utilizing less hidden units seems to improve upon
classification results.

Since for the 20 Newsgroups dataset the original RSM model uses very few (only 50) hidden
units, we want to know, if this is the case here, too. While very few hidden units lead to less
good results, the results of Table 3.17 and 3.18 suggest that employing half as many hidden
units for the RSM layer than cluster centers is a good choice.

Experiment 3.5.4: Deep Neural Networks with RSM input layers: RSM->RBM-
>SIG models
Our initial goal was to use Deep Neural Networks with RSM input layers. However, the results
on the 20 Newsgroups dataset already indicated that deep networks do not improve classification.
The results of Table 3.19, where we add one more RBM layer in between the RSM input and
the sigmoidal output layer, give evidence that this also holds for visual word counts (possibly
even for all counts input data). Here, all RBM layers have 512 hidden units and are pre-trained
for 100 epochs with learning rate 0.1.

Table 3.20 shows a comparison of the class Average Precision results for the conceptually different

5In particular, the best results are obtained with the following RSM->SIG models:
Lowe: Lowe SIFT implementation, K1024, RSM.H1024, RSM.E400, BP.E0
PCA-SIFT(36): Lowe SIFT implementation keypoints for PCA-SIFT(36), K2048, RSM.H2048, RSM.E400,
BP.E0
T0 019E4: SIFT++ implementation with threshold and edge-threshold parameters set to 0.019 and 4.0,
K512, RSM.H512, RSM.E1000, BP.E0
SIFT++: SIFT++ implementation with default parameters, K4096, RSM.H4096, RSM.E500,BP.E246
MBKM++: SIFT++ implementation with default parameters, K2048 (kmeans++ initialization),
RSM.H2048, RSM.E250, BP.E0

66

3 Own work

\RSM. K512, H512 K1024, H1024 K2048, H2048 K4096, H4096
SIG tf 13.79 (667) 14.76 (867) 16.17 (998) 15.78 (995)
NN tf-idf 11.23 (368) 18.57 (90) 24.41 (74) 24.75 (249)
NN tf 28.30 (29) 27.12 (105) 26.87 (489) 26.00 (484)
RSM.E100 31.18 (19) 31.66 (1) 31.34 (250) 30.55 (181)
RSM.E250 32.33 (148) 33.08 (6) 33.10 (250) 32.84 (51)
RSM.E400 31.90 (1) 32.94 (95) 33.19 (0) 32.96 (3)
RSM.E500 31.96 (250) 32.98 (8) 33.13 (0) 33.28 (246)
RSM.E750 31.53 (0) 32.45 (26) 32.64 (63) 32.21 (214)
RSM.E1000 31.55 (32) 31.80 (29) 32.16 (49) 31.80 (0)

Table 3.14: Mean Average Precision classification rates on visual word counts obtained by
Vedaldi’s SIFT++ implementation with default parameters and Mini-batch k-
Means.

\RSM. K512, H512 K1024, H1024 K2048, H2048 K4096, H4096
SIG tf 13.55 (804) 15.26 (935) 15.03 (713) 15.87 (895)
NN tf-idf 11.66 (15) 19.42 (91) 23.49 (92) 24.00 (455)
NN tf 28.34 (23) 26.71 (22) 26.05 (500) 25.90 (499)
RSM.E100 31.34 (0) 30.85 (18) 31.16 (92) 30.43 (168)
RSM.E250 31.95 (249) 32.63 (38) 33.22 (0) 32.09 (250)
RSM.E400 32.05 (2) 32.39 (6) 32.83 (0) 32.45 (249)
RSM.E500 32.24 (1) 32.55 (6) 32.70 (115) 32.41 (128)
RSM.E750 32.01 (60) 32.36 (2) 31.83 (0) 31.34 (197)
RSM.E1000 31.61 (4) 32.12 (0) 31.47 (158) 30.94 (131)

Table 3.15: Mean Average Precision classification rates on visual word counts obtained by
Vedaldi’s SIFT++ implementation with default parameters and Mini-batch
k-Means initialized with kmeans++.

67

3 Own work

Lowe PCA-SIFT(36) T0 019E4 SIFT++ MBKM++
aeroplane 47.99 46.42 41.53 51.58 51.58
bicycle 32.24 35.02 22.21 35.20 32.38
bird 27.77 27.74 19.73 28.59 30.93
boat 37.40 31.88 22.73 43.64 43.27
bottle 20.54 18.03 10.87 19.56 13.74
bus 25.08 24.66 22.57 24.94 22.14
car 42.49 36.23 38.53 43.79 43.75
cat 34.87 31.69 28.48 33.89 35.34
chair 34.39 28.06 32.68 36.35 34.96
cow 23.15 17.05 22.67 20.47 21.35
diningtable 22.37 22.84 22.47 20.70 24.24
dog 31.00 31.73 29.69 32.82 31.94
horse 40.31 44.61 35.02 46.55 46.90
motorbike 26.96 28.56 21.29 29.31 30.95
person 69.93 68.74 66.05 70.43 70.38
potted plant 13.36 17.97 19.23 14.67 15.81
sheep 24.58 23.69 19.34 25.54 25.88
sofa 25.13 23.15 24.73 22.48 24.31
train 36.67 37.55 33.17 35.50 39.76
tv/monitor 29.17 23.21 27.80 29.66 24.98
mean Average Precision 32.27 30.94 28.04 33.28 33.23

Table 3.16: Class Average Precisions resulting from different descriptors and kmeans++ initial-
ization (MBKM) with RSM->SIG models, in particular best mAP performances
from Tables 3.11 to 3.15.

\RSM. K512, H2048 K1024, H2048 K2048, H2048 K4096, H2048
NN tf-idf 10.79 (41) 17.82 (32) 24.41 (74) 25.07 (293)
NN tf 27.86 (412) 26.82 (456) 26.87 (489) 25.04 (462)
RSM.E100 31.71 (16) 31.47 (8) 31.34 (250 30.60 (127)
RSM.E250 32.85 (93) 32.61 (0) 33.10 (250) 33.05 (244)
RSM.E400 32.65 (161) 32.83 (140) 33.19 (0) 33.39 (0)
RSM.E500 32.69 (231) 32.64 (214) 33.13 (0) 33.16 (0)
RSM.E750 32.63 (20) 32.12 (250) 32.64 (63) 32.96 (0)
RSM.E1000 32.45 (34) 32.12 (100) 32.16 (49) 32.02 (0)

Table 3.17: Mean Average Precision classification rates on visual word counts obtained by
Vedaldi’s SIFT++ implementation with default parameters and Mini-batch
k-Means with 2048 hidden units.

models so far plus the DualRSM model, introduced in Section 3.6.6 The standard Feed-forward

6In particular, the best results are obtained using the following models:
RSM->SIG: SIFT++ with default parameters, K2048, RSM.H1024, RSM.E250, BP.E70

68

3 Own work

\RSM. K2048, H128 K2048, H256 K2048, H512 K2048, H1024
NN tf-idf 24.47 (56) 24.62 (53) 24.51 (78) 23.63 (37)
NN tf 26.94 (43) 26.70 (57) 26.21 (238) 26.87 (275)
RSM.E100 23.15 (148) 27.54 (250) 29.77 (250) 30.98 (161)
RSM.E250 25.53 (1) 30.92 (12) 32.16 (77) 33.65 (70)
RSM.E400 27.28 (17) 31.83 (1) 32.47 (1) 33.43 (0)
RSM.E500 27.39 (11) 32.63 (128) 32.48 (1) 33.11 (6)
RSM.E750 28.44 (43) 32.48 (244) 32.23 (195) 32.75 (0)
RSM.E1000 29.25 (97) 32.19 (2) 32.17 (6) 32.16 (0)

Table 3.18: Mean Average Precision classification rates on visual word counts obtained by
Vedaldi’s SIFT++ implementation with default parameters and Mini-batch
k-Means with few hidden units.

\RSM. K512, H512 K1024, H1024 K2048, H2048 K4096, H4096
RSM.E100 31.54 (8) 31.15 (231) 29.90 (61) 24.99 (37)
RSM.E250 32.05 (42) 32.91 (117) 31.84 (243) 29.34 (197)
RSM.E400 31.46 (9) 32.72 (126) 32.20 (143) 29.96 (182)
RSM.E500 32.27 (67) 33.35 (67) 32.18 (249) 29.54 (239)
RSM.E750 31.99 (84) 32.20 (28) 31.85 (124) 28.81 (245)
RSM.E1000 31.99 (21) 32.58 (62) 30.77 (226) 28.20 (188)

Table 3.19: Mean Average Precision classification rates on visual word counts obtained by
Vedaldi’s SIFT++ implementation with default parameters, Mini-batch k-
Means and Deep Belief Networks with RSM input layers. (RBM.H512, RBM.E100,
RBM.L0.1 for all experiments) (RSM->RBM->SIG).

Neural Networks perform better than a single sigmoidal layer as one would expect. The standard
Neural Networks trained on tf-idf values perform less good than the ones trained on tf values.
Nevertheless, Neural Networks with RSM input layers trained on tf values significantly outper-
form standard Feed-forward Neural Networks. Figures 3.7 and 3.8 display the recall precision
curves from which the Average Precision scores are calculated.

Experiment 3.5.5: Support Vector Machines (SVM) on visual word counts and 128
element codes calculated by a Deep Auto-Encoder.

MBKM++: SIFT++ with default parameters, K2048 with kmeans++ initialization, RSM.H2048,
RSM.E250, BP.E0
DBN: RSM->RBM->SIG model, SIFT++ with default parameters, K1024, RSM.H1024, RSM.E500,
RBM.H512, BP.E67
SIG: sigmoidal layer only, SIFT++ with default parameters, K2048, BP.E998
NN tf: standard Feed-forward Neural Network fed with visual word counts (tf), SIFT++ with default pa-
rameters, K4096, 2048 hidden units, BP.E293
NN tf: standard Feed-forward Neural Network fed with tf-idf values, SIFT++ with default parameters, K512,
512 hidden units, BP.E29
DualRSM: left wing: SIFT++ with default parameters, K2048; right wing: all-to-all distance counts with
1000 bins; RSM.H2048, RSM.L0.0001, RSM.E1500

69

3 Own work

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
aeroplane

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
bicycle

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
bird

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
boat

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
bottle

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
bus

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
car

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
cat

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
chair

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
cow

SIFTPP
MBKM++
DBN
SIG
NN tf-idf
NN tf
DualRSM

Figure 3.7: The corresponding recall precision curves to the values displayed in Table 3.16, classes
aeroplane to cow. See in color for better visualization.

70

3 Own work

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
diningtable

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
dog

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
horse

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
motorbike

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
person

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
pottedplant

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
sheep

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
sofa

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
train

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
tvmonitor

SIFTPP
MBKM++
DBN
SIG
NN tf-idf
NN tf
DualRSM

Figure 3.8: The corresponding recall precision curves to the values displayed in Table 3.16, classes
diningtable to tv/monitor. See in color for better visualization.

71

3 Own work

RSM->SIG MBKM++ DBN SIG NN tf-idf NN tf DualRSM
aeroplane 50.12 51.58 48.29 40.99 46.79 46.24 53.24
bicycle 33.06 32.38 27.56 17.27 22.38 25.12 30.86
bird 26.73 30.93 27.38 18.89 15.56 24.78 23.80
boat 40.27 43.27 42.20 21.45 37.38 42.47 40.71
bottle 20.57 13.74 15.99 3.99 15.20 10.74 14.71
bus 21.62 22.14 28.91 3.50 21.80 27.16 27.48
car 43.95 43.75 44.88 34.03 35.80 39.80 39.01
cat 34.62 35.34 34.37 25.33 30.92 32.82 35.26
chair 34.67 34.96 34.73 18.11 26.28 30.62 34.27
cow 26.31 21.35 25.30 2.39 18.06 19.64 26.91
diningtable 26.21 24.24 27.30 3.70 16.91 13.37 24.67
dog 34.92 31.94 33.14 25.82 25.23 22.45 33.32
horse 48.56 46.90 49.05 5.02 29.57 38.48 42.59
motorbike 25.71 30.95 30.75 4.35 20.71 19.81 28.72
person 68.78 70.38 70.20 56.13 61.84 67.94 69.17
potted plant 15.37 15.81 20.10 4.20 7.98 17.03 18.37
sheep 26.95 25.88 19.30 6.18 10.05 16.41 22.88
sofa 25.31 24.31 20.53 12.68 13.90 16.33 24.28
train 38.43 39.76 36.96 4.98 26.98 30.53 40.03
tv/monitor 30.92 24.98 30.16 14.49 18.24 24.32 27.12
mAP 33.65 33.22 33.35 16.17 25.07 28.30 32.87

Table 3.20: Class Average Precisions of the top-performers (mAP) of the conceptually different
models: RSM->SIG on visual word counts obtained from SIFT++ descriptors with
default parameters, plus with kmeans++ initialization (MBKM++), RSM->RBM-
>SIG (DBN), sigmoidal layer only (SIG), standard Feed-forward Neural Networks
on visual word counts (NN tf) and tf-idf (NN tf-idf) values, and the DualRSM model.

We trained binary one-versus-all Support Vector Machines with linear kernels on both: directly
on the visual word counts (tf), as well as on codes produced by a Deep Auto-Encoder with
Replicated Softmax in- and output-layers. For this task we use Joachims [22] SVMlight7.

The first SVM’s are trained on visual word counts obtained via SIFT++ with default parameters
and 2048 cluster centers calculated with MBKM on the train set. We optimize rather coarsely
on the SVM hyperparameter C (trade-off between training error and margin), i.e. for each class
we train a SVM with C = 0.0001, 0.0003, 0.001, 0.01, 0.1 and choose the one giving the best class
Average Precision on the test set. The SVM’s confidence in class prediction is rescaled to the
interval [0; 1]. The value 0.0003 is the default parameter for C and calculated as [avgx ∗x]−1 on
the word counts from the train set.

For the Deep Auto-Encoder, the RSM layer is pre-trained for 500 epochs with 2048 hidden units

7http://svmlight.joachims.org/

72

http://svmlight.joachims.org/

3 Own work

SVM on tf SVM on DAE codes
aeroplane 4.72 (C=0.0001) 35.86 (C=0.0001)
bicycle 8.18 (C=0.003) 16.49 (C=0.01)
bird 7.18 (C=0.001) 10.37 (C=0.0189)
boat 4.18 (C=0.003) 7.60 (C=0.1)
bottle 4.68 (C=0.0001) 6.33 (C=0.001)
bus 4.20 (C=0.01) 5.52 (C=0.1)
car 16.20 (C=0.01) 18.15 (C=0.001)
cat 8.00 (C=0.0001) 12.18 (C=0.001)
chair 8.80 (C=0.1) 12.51 (C=0.01)
cow 3.50 (C=0.01) 10.11 (C=0.0001)
diningtable 12.60 (C=0.1) 15.90 (C=0.0001)
dog 16.93 (C=0.0001) 11.73 (C=0.01)
horse 6.09 (C=0.1) 9.53 (C=0.0189)
motorbike 5.37 (C=0.01) 11.07 (C=0.01)
person 46.01 (C=0.1) 54.80 (C=0.01)
pottedplant 5.59 (C=0.1) 6.78 (C=0.0189)
sheep 2.20 (C=0.003) 12.10 (C=0.0189)
sofa 5.38 (C=0.01) 7.46 (C=0.01)
train 14.35 (C=0.01) 8.19 (C=0.01)
tvmonitor 6.14 (C=0.01) 10.72 (C=0.001)
Mean Average Precision 9.51 14.17

Table 3.21: Class Average Precision results on the test set for one-versus-all Support Vector
Machines (SVM) on visual word counts and codes (vectors of size 128) calculated
by a Deep Auto-Encoder (DAE) on visual word counts (optimal hyperparameter C
in brackets.

and learning rate 0.0001 on the same word counts as the first SVM’s. There are two subsequent
layers, pre-trained as standard RBMs for 100 epochs with learning rate 0.1. The encoder part
of the Deep Auto-Encoder model can be characterized as follows:
RSM.H2048->RBM.H1024->RBM.H128. SVM’s are then trained on the resulting 128 element
codes carried out on the train set with hyperparameters C = 0.0001, 0.001, 0.01, 0.0189, 0.1 as
described above. Here, 0.0189 is the calculated default parameter for C.

The results presented in Table 3.21 are unexpectedly bad, but strangely, for some classes the
Average Precision is good. Also, the SVM trained on the codes received by the Deep Auto-
Encoder are clearly better than for the SVM directly trained on word counts. This might me
due to the fact that SVMlight targets on sparse input data.

Experiment 3.5.6: Linear embedding using an RSM model with 2 and 3 hidden
units.
Here, we try to perform a linear embedding comparable e.g. to t-SNE by Van Der Maaten
and Hinton [55], which was already successfully achieved using EFH models, e.g. with UP-LSI

73

3 Own work

from Welling et al. [58]. Therefore, we used a RSM model with only 2 hidden units, trained
for few epochs (5 to 100) and very small learning rates. Afterwards, the hidden units’ activa-
tions are visualized in a scatter plot. There was no clear clustering recognizable, even not if
we restrict training and visualization to images with exactly one object of two different classes.
We also tried to train a Deep Auto-Encoder producing 2 element codes and used the resulting
activations on the code layer for a linear embedding with comparable results. Training a Deep
Auto-Encoder that produces 128 element codes and applying t-SNE on these codes approaches
a linear embedding, but only for some combinations of few object classes (images containing
only pictures from one of the two or three classes).

In summary, two-layer Neural Networks with Replicated Softmax input layers outperform two-
layer standard Feed-forward Neural Networks for about 5% in mean Average Precision at the
task of image object classification, where about 1% probably stems from overfitting of the RSM
layer. The kmeans++ initialization of Mini-batch k-Means does not improve upon classification
results, but may lead to slightly more stable results, despite it’s expensiveness with regards to
computation time. We can not achieve as good results as e.g. Zhou et al. [66], but we come close
to the results of Bengio et al. [4]. In contrast to both, we do not collect SIFT descriptors on
a fixed, usually very fine grid on the images, but use standard SIFT detector implementations
on the images. The more SIFT descriptors are obtained from the images, the better the results
become. Removing large fractions of information from the descriptors (PCA-SIFT(36)) does
lower classification results. Results from reducing visual word counts to 128 element codes using
a Deep Auto-Encoder and training binary one-versus-all Support Vector Machines on the codes
perform strangely bad. We were not able to achieve a meaningful linear embedding using the
Replicated Softmax model. We also tried it once with three hidden units, looking slightly better,
but far from meaningful.

74

3 Own work

3.6 DualRSM model & visual word all-to-all distance counts

We experimented with an idea to extend the Replicated Softmax input layer of our pipeline to
incorporate spatial information about the keypoints, since it is abandoned by the quantization
of visual words into word counts. In 2007, Burghouts et al. [10] showed that all-to-all distances
measured with Lp-norm similarity measures on feature vectors obtained from images are Weibull
distributed, ’if the feature vectors are correlated and non-identically distributed’. Therefore,
we added a second wing to the Replicated Softmax. This is an application of Dual Wing
Harmoniums introduced by Xing et al. [62]. We call this the DualRSM model. We feed the
DualRSM model with visual word counts and all-to-all distance counts. This can also be seen
as a variant of what Zhang et al. [65] call term connection frequency for images rather than text
documents.

0 200 400 600 800 1000
Distance

0

2000

4000

6000

8000

10000

C
o
u
n
t

000325.jpg: aeroplane
000117.jpg: aeroplane
000268.jpg: aeroplane
000131.jpg: car
000091.jpg: car
000153.jpg: car
000133.jpg: horse, person
000407.jpg: horse, person
000275.jpg: horse, person

Figure 3.9: All-to-all distances distributions of visual words from selected training images and
three different classes. The distance counts are Weibull distributed as evinced by
Burghouts et al. [10]. See in color for better visualization.

First, the all-to-all distances8 of the feature vectors, obtained by SIFT++ with default parame-
ters from the PASCAL VOC 2007 images, appear to obey Weibull distributions, as demonstrated

8one distance for each pair of all feature vectors from one image vectors

75

3 Own work

in Figure 3.9. The Weibull distribution can be defined as follows (without location parameter):

f(x, λ, k) =
k

λ

(x
λ

)k−1
exp

(
−
(x
λ

)k)
, x, λ, k ≥ 0 (3.6)

where k is the shape and λ is the scale parameter. Figure 3.9 visualizes the idea that the all-to-all
distances of the feature vectors obey a different Weibull distribution for each class (however, here
we selected images that empower this hypothesis), i.e. the all-to-all distances of the keypoints
from one image hold discriminative information about the objects present in it. The all-to-all
distance counts are, likewise to the respective SIFT keypoints, scale- and rotation-invariant.

0 1000 2000 3000 4000 5000
scale parameter

1.0

1.5

2.0

2.5

3.0

sh
a
p
e
 p

a
ra

m
e
te

r

aeroplane
horse

Figure 3.10: Estimates of the assumed Weibull distribution’s shape and scale parameters for
each training set image containing at least one object from one of the two classes
aeroplane or horse. See in color for better visualization.

Figure 3.10 reinforces that the Weibull parameters estimates are different for certain different
classes. Figures 3.11 and 3.12 depict the estimates of the shape and scale parameters of the
assumed Weibull distributions of all images containing at least one object from the respective
class in the training set and the test set, respectively. Obviously, several classes share similar
parameter characteristics. The scale parameter directly relates to the number of SIFT keypoints
detected in an image. The images picturing an object of the aeroplane class, appear to have very
few descriptors (this might e.g. be due to the ’empty’ heaven background often found in such
images). Using a standard detector, larger images result in a larger amount of descriptors and

76

3 Own work

aeroplane bicycle bird boat

bottle bus car cat

chair cow diningtable dog

horse motorbike person pottedplant

sheep sofa train tvmonitor

Figure 3.11: Shape and scale parameter estimates (training set), for details see text.

aeroplane bicycle bird boat

bottle bus car cat

chair cow diningtable dog

horse motorbike person pottedplant

sheep sofa train tvmonitor

Figure 3.12: Shape and scale parameter estimates (test set), for details see text.

77

3 Own work

h1 h2 h3 hF
...

v1 v2 v u1 u2 uL

DualRSM: Hidden Units h :
Bernoulli-distributed
Binary Values

Left Wing, Visible Units v :
Multinomial-distributed
(Softmax, sampled D times)

j

k

... K

Right Wing, Visible Units u :
Multinomial-distributed
(Softmax, sampled D times)

L

...

Figure 3.13: Architecture of the DualRSM model. Two wings on the visible random variables
layer allow for two different types of input data (input data in histogram form, e.g.
term frequencies and all-to-all distance counts).

thus images of different sizes are problematic. However, one could remedy this problem by using
the common approach of partitioning the image into blocks, see e.g. Bengio et al. [66]. However,
Schroeder [50] reports that Weibull parameter estimation algorithms are often unstable. We
restricted the range of relevant distances between SIFT descriptors to the interval [0.7, 1.3] (due
to this, we do not need the location parameter of the Weibull distribution). This range is
discretized into 1000 bins in order to obtain a counts histogram. Figure 3.13 visualizes the
architecture of the DualRSM model extended by adding a second wing on the visible units layer.
With all parameters adopted from the RSM model described in Subsection 2.7.7 the energy
function is extended to:

E(V̂ , Û , h) = −
K∑
k=1

hTW kV̂ k −
L∑
l=1

hTΨlÛk − akT
V̂ k − clTÛ l −DhbT (3.7)

where weight matrix Ψ, input count data matrix (or histogram matrix) Û and bias vector c
belong to the second wing. The sampling in this model is easily carried out as follows:

p(V̂ k
i = 1|h) =

exp(aki +
∑F

j=1 hjW
k
j)∑K

q=1 exp(aqi +
∑F

j=1 hjW
q
j)

(3.8)

78

3 Own work

p(Û li = 1|h) =
exp(cli +

∑F
j=1 hjΨ

l
j)∑L

p=1 exp(cpi +
∑F

j=1 hjΨ
p
j)

(3.9)

p(hj = 1|V̂ , Û) = σ

(
Dbj +

K∑
k=1

W k
j V̂

k +
L∑
l=1

Ψl
jÛ

l

)
(3.10)

The extension to the second wing is a direct application of Dual Wing Harmoniums presented
by Xing et al. [62], plus weight sharing in both wings. Since we have two types of input data for
each record, the scaling of the hidden biases remains unchanged. While this gives a theoretical
justification, the implementation of the RSM model does not need to be changed here, the two
input data matrices are simply concatenated. Due to a large discrepancy of maximum values,
we rescale the distance counts by normalizing it to the maximum value of the visual word counts
and rounded it to the nearest integer.

RSM.H, RSM.L H3072, L0.0001 H3072, L0.00005 H3072, L0.00001 H2048, L0.0001
RSM.E100 26.81 23.87 18.64 27.22
RSM.E250 29.76 29.06 21.02 29.10
RSM.E400 31.49 30.89 24.18 31.20
RSM.E500 31.28 30.43 24.20 31.72
RSM.E750 30.93 31.74 26.41 32.82
RSM.E1000 31.35 32.74 26.84 32.41
RSM.E1250 31.62 32.53 28.36 32.56
RSM.E1500 31.33 32.36 26.53 32.86
RSM.E1750 31.54 32.74 26.94 31.25
RSM.E2000 31.55 31.21 29.37 32.24

Table 3.22: Mean Average Precision rates obtained by the DualRSM model, where one wing is
fed with visual word counts obtained by SIFT++ with default parameters (K =
2048) and the other wing is fed with all-to-all distance counts (B = 1000 bins).

We trained the DualRSM model as part of a DualRSM->SIG model with different learning rates,
constant momentum rate of 0.9, where the SIG layer is trained for 30 epochs with learning rate
0.1, but without error backpropagation. The DualRSM weights are initialized as described for
the RSM model in Section 3.1. First experiments suggested that the second wing improves upon
classification. Unfortunately, we were not able to validate these results in the long run and
adding the second wing fed with all-to-all distance counts turns out to decrease mean Average
Precision results in comparison to the respective RSM->SIG model trained on word counts only,
see Table 3.22. The error backpropagation did not work and therefore is neglected, i.e. the mAP
results come from pre-training the DualRSM and the sigmoidal layer solely.

In summary, the DualRSM model trained on the combination of visual word counts and their
respective all-to-all distance counts does not improve upon image object classification. The
second wing of the DualRSM model could, also be fed with other input data, e.g. in an image
retrieval engine that combines images and keywords as input from the user.

79

4 Conclusion

The primary goal of this thesis was to realize a bag-of-visual-words framework for image retrieval
that uses the Replicated Softmax model as part of a Deep Belief Network on visual word counts
obtained by vector quantization of SIFT descriptors extracted by a standard detector rather
than keypoints extracted at all points of a fine grid over the images.

First, Sculley’s Mini-batch k-Means algorithm appears to be an attractive alternative to the
Hierarchical and Approximate variants of k-Means for the quantization of visual words due to
its time- and memory efficiency, as well as its easy parallelization on GPUs utilizing Gnumpy.
A direct comparison would be very useful and remains an effort for the future. While loading
all descriptors into main memory is a problem, subsampling of descriptor space appears to be a
working solution. We used 1 million subsamples, but this could be explored further.

Secondly, the Replicated Softmax model turns out to be a powerful tool in both use cases: as
a standalone model or as part of a Neural Network. For both applications the most important
hyperparameter is the number of epochs the Replicated Softmax model is trained. However, the
Replicated Softmax model is prone to overtraining and needs to be trained for several hundred
epochs (2 to 40 hours). This is probably due to the hidden biases scaling, requiring the learning
rate to be relatively small. Hence, training the Replicated Softmax is a clear bottleneck in our
pipeline. Thus, one obvious goal for the future is to develop parallelized implementation of the
Replicated Softmax model. We were not able to parallelize it with Gnumpy due to the required
sampling from multinomial random variables. Eventually though, using the logsum-trick in the
implementation might help to use larger learning rates.

Our initial goal was to employ Deep Neural Networks. However, for document as well as image
object classification, networks with more than two layers did not improve upon classification
performance in our pipeline. Eventually, this might hold for all counts input data. Despite this,
two-layer Neural Networks with Replicated Softmax input layers perform about 5% better than
standard Feed-forward Neural Networks on the image object classification task, which is a very
good result.
Neural Networks with Replicated Softmax input layers also perform very well for document clas-
sification on the 20 Newsgroups dataset with absolute results comparable to LDA and DiscLDA
on dictionaries based on most frequent word counts and highest information gain, respectively.
The latter with classification rates greater than 80%. We can reproduce the retrieval results
from Salakhutdinov and Hinton on the 20 Newsgroups dataset using our standalone Replicated
Softmax implementation. By using a dictionary based on highest information gain rather than
on most frequent word counts, we significantly exceed the results from the original Replicated
Softmax paper for document retrieval on the 20 Newsgroups dataset.
In both applications, the absolute classification performance heavily depends upon the input

80

4 Conclusion

data, e.g. simply by selecting a dictionary by information gain rather than most frequent occur-
rences can result in a gain of ca. 5% absolute classification performance. Likewise, the results
of the image object classification task tend to become better, the more descriptors are used.
Due to this fact, others typically extract descriptors along a very fine grid resulting in a huge
amount of descriptors. If information is cut out, the results suffer, too.1 So, two interesting
questions would be how good our pipeline performs on descriptors obtained, on the one hand
along grid-points, or on the other hand by a standard detector and reduced in number by se-
lecting distinctive descriptors only, as described by Kang et al. [23].

We trained binary one-versus-all Support Vector Machines on both: the visual word counts (tf)
and 128-element codes obtained by a Deep Auto-Encoder trained on the visual word counts.
The absolute classification results were quite bad, especially since leading papers achieve very
good results using Support Vector Machines. However, we did not spent much time on this.
Nevertheless, the Support Vector Machines trained on the codes obtained by the Deep Auto-
Encoder are significantly better.

Welling et al. [58] succeeded in carrying out a linear embedding using the UP-LSI model. We
experimented with Replicated Softmax models with two or three hidden units trained with very
small learning rates for few epochs, but no clearly visible clustering occurred. An open task for
the future is the application of unit-variance Gaussian hidden units in the RSM model rather
than Bernoulli latent variables2.

The DualRSM model as input layer of a Neural Network was an appealing idea to me. In the
end, when fed with visual word counts and their respective all-to-all distance counts the results
were slightly worse than with a comparable single RSM model input layer. It could improve, at
least a bit, the classification results on the class of aeroplane objects. This is due to the coupling
of the scale parameter of the assumed Weibull distributions to number of descriptors. The im-
ages containing at least one object of type aeroplane typically have much less descriptors than
images where objects from the other classes are present, which is eventually due to the fact that
aeroplanes are often photographed in the sky. A conceivable way of improvement would be to
partition the image and to use distance counts from within the partitions. Moreover, one could
also use the DualRSM model to combine two different word count inputs, visual word counts
plus a dictionary stemming from annotation data, thereby integrating input data obtained by
unsupervised learning and manually added meta data.

Modeling spatial relationships and being able to incorporate such information would be of great
advantage. A difficult, but eventually promising idea could be to shift from image to object
level on the input side of the pipeline. An idea for this would be for example to automate image
segmentation first in a way that optimizes for large but independent connected components and
to extract keypoints from within these connected components and subsequently fed into the
bag-of-visual-words pipeline.

1In this work we merely experimented with the implementation given by the authors of the criticized PCA-SIFT
paper.

2The mathematics work out smoothly, but we did not implement it.

81

A Development environment

All experiments were carried out on a system with the following configuration:

Hardware:

• Processor: Intel Core i5-2500, 4 x 3300 MHz, L1-Cache: 4 x 256 KByte , L2-Cache: 6144
Kbyte

• Main Memory: G.Skill DIMM 8GB DDR3-1333

• Graphics: ASUS ENGTX580 DCII/2DIS, 1536MB, 384 Bit, PCIe 2.0 x16, with NVIDIA
GeForce GTX580 (512 CUDA Cores)

• Motherboard: ASUS P8P67 Deluxe R.3.0

• Hard Disk Drive: Hitachi HDS722020ALA330 2TB, SATA300, 8.2ms, 32MB Cache,
7200 RPM

Software:

• Operating System: Ubuntu Linux 10.10 64-bit, Kernel 2.6.35

• Python 2.6.6, Numpy1 1.5.1 with self-build ATLAS 8.3 (for Netlib’s LAPACK 3.3.0)

• SciPy2 0.9.0

• scikits.learn3 0.8

• matplotlib 1.0.0

• CUDA Toolkit4 3.0 64-bit for Ubuntu 9.04 (v. 3.0 for Cudamat compatibility)

• Cudamat5 0.3 by Mnih [36] (limited to 32-bit floats)

• Gnumpy6 by Tieleman [54] (limited to 32-bit floats)

• SIFT++ 0.8.17 by Vedaldi [56]

• VLFeat8 0.9.9 by Vedaldi [56]

1http://numpy.scipy.org/, http://math-atlas.sourceforge.net/, http://www.netlib.org/lapack/
2http://www.scipy.org/
3http://scikit-learn.sourceforge.net/
4http://developer.nvidia.com/cuda-toolkit-30-downloads
5http://code.google.com/p/cudamat
6http://www.cs.toronto.edu/~tijmen/gnumpy.html
7http://www.vlfeat.org/~vedaldi/code/siftpp.html
8http://www.vlfeat.org/

82

http://numpy.scipy.org/
http://math-atlas.sourceforge.net/
http://www.netlib.org/lapack/
http://www.scipy.org/
http://scikit-learn.sourceforge.net/
http://developer.nvidia.com/cuda-toolkit-30-downloads
http://code.google.com/p/cudamat
http://www.cs.toronto.edu/~tijmen/gnumpy.html
http://www.vlfeat.org/~vedaldi/code/siftpp.html
http://www.vlfeat.org/

B Batch-, online- and minibatch-methods &
momentum

Iterative methods are widely used in various scientific disciplines, especially if exact methods
are computationally intractable. For our purposes assume a dataset D = {d0, . . . , dN−1} with N
records and a model with parameters θ. Starting with an initialization that is easy to calculate,
an iterative procedure approaches a solution by updating the model parameters succesively. In
each step the model parameters are updated to find a ’better’ approximation θt+1. The update
function f depends upon the dataset and the current parameter values at step t (and target
values in a supervised setting):

θt+1 := θt + η ∗ f(D, θt) (B.1)

A very common iterative method is gradient descent that updates the model by taking steps
along the negative gradient (the gradient is a vector pointing towards the direction of the greatest
ascent) of some objective function E(D, θ):

θt+1 := θt − η ∗ ∇E(D, θt) (B.2)

If the update function or in particular the gradient descent function is of the following form:

∇E(D, θt) =
N∑
n=1

e(dn, θt) (B.3)

where e(dn, θt) is the gradient function expressed in terms of a single dataset record dn, then an
online method, also called stochastic gradient descent (SGD) variant can be applied:

θt+1 := θt − η ∗ e(dn, θt) (B.4)

The advantage of online methods is that each record of the dataset can be presented once at a
time in contrast to running through the whole dataset for each parameter update, what is called
a batch method. However, online methods also experience a drawback, since running over each
record individually is computationally usually inefficient and often comprises high variance. A
trade-off solution to both problems can be the minibatch variant of SGD.

83

B Batch-, online- and minibatch-methods & momentum

d0 d1dM-1 dM d2M-1 d(R-1)M dRM-1

...
Minibatch 0 Minibatch 1 Minibatch R-1

Figure B.1: Partitioning of a dataset D = (d0, . . . , dN) into R chunks, so-called minibatches, of
equal size M .

Assuming the dataset can be partitioned into R chunks of equal size M :
D = {d1, . . . , d1∗M , d1∗M+1, . . . , d2M , , dRM , . . . , dN}, cf. Figure B.1 then a parameter
update r takes the form:

θt+1 := θt − η ∗

(
r∗M+M−1∑
n=r∗M

e(dn, θt)

)
(B.5)

Often the calculation of M updates at once is computationally more efficient by exploiting linear
algebra package subroutines. In order to carry out true SGD, in each iteration over a minibatch
the records of a minibatch would have to be chosen randomly from the complete set of records.
However, this would cause a lot overhead and running over fixed minibatches over the course of
training often works well, too. Note that varying the minibatch size does affect the parameter
updates and usually leads to different solutions despite equivalent initializing, cf. Hinton [16].
Hence, choosing the minibatch size is a crucial task. Hinton suggests to choose the minibatches
such that a record from each class is contained.

Another common option to stabilize gradient descent methods is by using a momentum term,
see. Hinton [16]. It delays the full effect of the current parameter update δθt as follows:

δθt := −η ∗ f(D, θt) + αδθt−1 (B.6)

with momentum rate α. Using Hinton’s ball analogy, it forces the ball rolling downhill (gradient
descent) to react less nervous to current direction changes and thus stabilizes learning.

84

C Mathematical derivations

C.1 Sigmoid, softmax and hyperbolic tangent function derivatives

Tangens hyperbolicus (Eq. 2.31) derivative:
The derivative of the tangens hyperbolicus function can be expressed in terms of itself:

∂ tanh(a)
∂a

=
∂

∂a

exp(a)− exp(−a)
exp(a) + exp(−a)

=
(exp(a) + exp(−a))2 − (exp(a)− exp(−a))2

(exp(a) + exp(−a))2
(C.1)

= 1− tanh2(a) (C.2)

Logistic sigmoid function (Eq. 2.12) derivative:
Likewise, the derivative of the logistic sigmoid function can be expressed in terms of itself:

∂σ(a)
∂a

=
∂

∂a

1
1 + exp(−a)

=
∂

∂a
= (1 + exp(−a))−1 (C.3)

=
−1

1 + exp(−a)2
(− exp(−a)) =

exp(−a)
(1 + exp(−a))2

(C.4)

= σ(a)
(

exp(−a)
1 + exp(−a)

)
= σ(a)

(
1 + exp(−a)
1 + exp(−a)

− 1
1 + exp(−a)

)
(C.5)

= σ(a)(1− σ(a)) (C.6)

Softmax function (Eq. 2.17) derivative:
In order to calculate the derivative of the softmax function, a case study for j = k and j 6= k is
necessary. For j = k it follows that:

∂yk
∂ak

=
∂

∂ak

exp(ak)∑
j exp(aj)

=
∂

∂ak
exp(ak)

∑
j

aj

−1

(C.7)

= exp(ak)

(∑
k

exp(aj)

)−1

+ exp(ak)
∂

∂ak

exp(ak) +
∑
j 6=k

exp(aj)

−1

(C.8)

=
exp(ak)∑
j exp(aj)

− exp(ak)

exp(ak) +
∑
j 6=k

exp(aj)

−2

exp(ak) (C.9)

=
exp(ak)∑
j exp(aj)

− (exp(ak))2(∑
j exp(ak)

)2 = yk − y2
k (C.10)

= yk(1− yk) (C.11)

85

C Mathematical derivations

While for j 6= k the following holds:

∂yk
∂aj

=
∂

∂aj

exp(ak)∑
j exp(aj)

=
∂

∂aj
exp(ak)

∑
j

aj

−1

(C.12)

= 0 + exp(ak)
∂

∂aj

∑
j

exp(aj)

−1

= − exp(ak)

∑
j

aj

−2

exp(aj) (C.13)

= −exp(aj) exp(ak)(∑
j aj

)−2 (C.14)

= −ykyj = yk(0− yj) (C.15)

These two partial results can be conveniently combined using the elements of the identiy matrix
Ikj :

∂yk
∂aj

= yk(Ikj − yj) (C.16)

C.2 Cross-entropy error function gradients

The gradient of the Logistic Regression cross-entropy error function is calculated as follows.
Given Eq. 2.14 one starts with calculating ∂E(w)

∂yn
:

∂E(w)
∂yn

=
∂

∂yn
−

N∑
n=1

(tn ln yn + (1− tn) ln(1− yn)) (C.17)

= − ∂

∂yn
(tn ln yn + (1− tn) ln(1− yn)(−1)) (C.18)

= −
(

1
tn
− 1− tn

1− yn

)
=
yn(1− tn)− tn(1− yn)

yn(1− yn)
(C.19)

=
yn − yntn − tn + yntn

yn(1− yn)
(C.20)

=
yn − tn

yn(1− yn)
(C.21)

Next, ∂yn
∂an

with yn := σ(an) is calculated using the result of C.1:

∂yn
∂an

=
∂

∂an
σ(an) = σ(an)(1− σ(an)) = yn(1− yn) (C.22)

Furthermore, ∇wan amounts to:

∇wan = ∇wwTφn = φn (C.23)

Using the chain rule on ∂E(w)
∂w and the results of Equations C.21, C.22 and C.23, the derivative

86

C Mathematical derivations

of Eq. 2.14 w.r.t. w amounts to:

∂E(w)
∂w

=
N∑
n=1

∂E(w)
∂yn

∂yn
∂an
∇wan =

N∑
n=1

yn − tn
yn(1− tn)

yn(1− tn)φn (C.24)

=
N∑
n=1

(yn − tn)φn (C.25)

Note that the leading minus sign of Eq. 2.14 is already taken into account in Eq. C.17.

The gradient of the Multiclass Logistic Regression cross-entropy error function is calculated
similarly. Given Eq. 2.20 one starts again with calculating ∂E(w)

∂ynk
:

∂E(w1, . . . , wK)
∂ynk

=
∂

∂ynk
−

N∑
n=1

K∑
k=1

tnk ln ynk = − ∂

∂ynk
tnk ln ynk (C.26)

= − tnk
ynk

(C.27)

And ∇wjaj amounts to:

∇wjaj = ∇wjwT
j φn = φn (C.28)

Using analogously the chain rule on ∂E(w)
∂wj

and the results of Equations C.27, C.16 and C.28,
the derivative of 2.20 w.r.t. wj amounts to:

∂E(w1, . . . , wK)
∂wj

=
N∑
n=1

K∑
k=1

∂E(w)
ynk

ynk
aj
∇wjaj =

N∑
n=1

K∑
k=1

− tnk
ynk

ynk (Ink − ynj)φn (C.29)

=
N∑
n=1

(ynk − tnj)φn (C.30)

Note that the leading minus sign of Eq. 2.20 is already taken into account in Eq. C.26. The
sum over k vanishes in the last step, since due to the 1-of-K coding scheme ∀n ∈ {1, . . . , N} :∑K

k=1 tnk = 1; tnk ∈ {0, 1} holds, i.e. only one addend of the sum for each n remains.

C.3 Conditional independence and sampling in the RBM model

Given the following energy function:

E(v, h) = −
N∑
i=1

M∑
j=1

viWijhj −
N∑
i=1

aivi −
M∑
j=1

bihi = −vTWh− aTv − bTh (C.31)

with visible units vector v = (v1, . . . , vD) , vi ∈ {0, 1}, hidden units vector h = (h1, . . . , hF) , hj ∈
{0, 1}, bias vector for the visible units a = (a1, . . . , aD) , ai ∈ R, bias vector for the hidden units

87

C Mathematical derivations

b = (b1, . . . , bF) , bi ∈ R and Wij ∈ R being the coupling matrix (weight matrix), the conditional
distribution p(v|h) is calculated following Freund and Haussler [14] as follows:

p(v|h) =
exp (−E(v, h))∑
v̂ exp (−E(v̂, h))

(C.32)

=
exp

(
vTWh+ aTv + bTh

)∑
v̂ exp (v̂TWh+ aTv̂ + bTh)

(C.33)

=
exp

(
bTh

)
exp

(
vTWh+ aTv

)
exp (bTh)

∑
v̂ exp (v̂TWh+ aTv̂)

(C.34)

=
exp

(∑D
i=1

∑M
j=1 viWijhj +

∑N
i=1 aivi

)
∑

v̂ exp
(∑D

i=1

∑M
j=1 v̂iWijhj +

∑N
i=1 aiv̂i

) (C.35)

=

∏D
i=1 exp

((∑M
j=1Wijhj + ai

)
vi

)
∑

v̂

∏D
i=1 exp

((∑M
j=1Wijhj + ai

)
v̂i

) (C.36)

=

∏D
i=1 exp

((∑M
j=1Wijhj + ai

)
vi

)
(

1 +
∑M

j=1Wijhj + ai

)∑
v̂2
. . .
∑

v̂N
exp

((∑M
j=1Wijhj + ai

)
v̂i

) (C.37)

=
N∏
i=1

exp
((∑M

j=1Wijhj + ai

)
vi

)
1 + exp

(∑M
j=1Wijhjn + ai

) (C.38)

=
N∏
i=1

p(vi|h) (C.39)

In the step from Eq. C.36 to Eq. C.36 the sum over the configurations v̂1 is written out and
configuration values are inserted. Then this step is repeated for all sums over configurations v̂i.
Finally, sampling can be carried out by:

p(vi = 1|h) = σ

 M∑
j=1

Wijhj + ai

 (C.40)

The model is symmetric, therefore:

p(h|v) =
F∏
j=1

p(hj |v); p(hj = 1|v) = σ

(
N∑
i=1

Wijvi + bj

)
(C.41)

88

C Mathematical derivations

C.4 Conditional independence and sampling in the EFH model

Given visible units with distributions from a member of the exponential family combined mul-
tiplicatively:

p({vi}) =
D∏
i=1

ri(vi) exp

(∑
a

θiafia(vi)−Ai({θia})

)
(C.42)

with Ai being the log-partition function, fia(vi) the sufficient statistics and θia the natural
parameters. Likewise, assume the hidden units stem from a possibly different member of the
exponential family and are analogously combined multiplicatively:

p({hj}) =
F∏
j=1

sj(hj) exp

(∑
b

λjbgjb(hj)−Bj({λjb})

)
(C.43)

with Bj being the log-partition function, gjb(hj) the sufficient statistics and λjb the natural
parameters. According to Welling et al. [58], the hidden and visible units distributions can be
combined by an energy function as follows:

E(v, h) = −
∑
ia

θiafia(vi)−
∑
jb

λjbgjb(hj)−
∑
ijab

W jb
ia fia(vi)gjb(hj) (C.44)

with W jb
ia being the coupling tensor (weight tensor).

Now we will show in detail that the conditional distribution p(v|h) indeed factorizes. We start
with the application of basic probability theory laws:1

p(v|h) =
exp(−E(v, h))∫

exp(−E(v′, h))dv′
= (C.45)

=
exp

(∑
ia θiafia(vi) +

∑
jb λjbgjb(hj) +

∑
ijabW

jb
ia fia(vi)gjb(hj)

)
∫

exp
(∑

ia θiafia(v
′
i) +

∑
jb λjbgjb(hj) +

∑
ijabW

jb
ia fia(v

′
i)gjb(hj)

)
dv′

(C.46)

=

∏
i exp

(∑
a θiafia(vi) +

∑
jabW

jb
ia fia(vi)gjb(hj)

)
∫ ∏

i exp
(∑

a θiafia(v
′
i) +

∑
jabW

jb
ia fia(v

′
i)gjb(hj)

)
dv′

(C.47)

The
∑

jb λjbgjb(hj) terms cancel out and the sums are transformed into products outside of the
exponential function. The following step assumes independence, but since we want to show
conditional independence it is ok. 2

1for discrete probability distributions replace the integral with a sum
2see e.g. http://planetmath.org/encyclopedia/MultidimensionalGaussianIntegral.html

89

http://planetmath.org/encyclopedia/MultidimensionalGaussianIntegral.html

C Mathematical derivations

=
D∏
i

exp
(∑

a θiafia(vi) +
∑

jabW
jb
ia fia(vi)gjb(hj)

)
∫

exp
(∑

a θiafia(v
′
i) +

∑
jabW

jb
ia fia(v

′
i)gjb(hj)

)
dv′i

(C.48)

=
D∏
i

exp
(∑

a

(
θia +

∑
jbW

jb
ia gjb(hj)

)
fia(vi)

)
∫

exp
(∑

a

(
θia +

∑
jbW

jb
ia gjb(hj)

)
fia(v′i)

)
dv′i

(C.49)

With θ̂ia := θia +
∑

jbW
jb
ia gjb(hj):

=
D∏
i

exp

(∑
a

θ̂iafia(vi)−
∫ ∑

a

θ̂iafia(v′i)dv
′
i

)
(C.50)

=
D∏
i

exp

(∑
a

θ̂iafia(vi)−A({θ̂ia})

)
(C.51)

For the last step the identity
∫
y exp(

∑
a θafa(y))dy = exp(A({θa})) was used. It holds, due to

the following argumentation:3∫
y
p(y)dy =

∫
y
r(y) exp

(∑
a

θafa(y)−A({θa})

)
dy (C.52)

= exp (−A({θa}))
∫
y
r(y) exp

(∑
a

θafa(y)

)
dy = 1 (C.53)

and therefore: ∫
y
r(y) exp

(∑
a

θafa(y)

)
dy = exp (A({θa})) (C.54)

The model is symmetric, consequently the derivation for p(h|v) is analogue.

C.5 Conditional independence and sampling in the RSM model

Assume the following energy function given by Salakhutdinov and Hinton [47]:

E(V, h) = −
K∑
k=1

hTW kV k −
(
ak
)T
V k − hTb (C.55)

or equivalently:

E(V, h) = −
D∑
i=1

F∑
j=1

K∑
k=1

hjW
k
ijV

k
i −

D∑
i=1

K∑
k=1

V k
i a

k
i −

F∑
j=1

hjbj (C.56)

3see e.g. http://www.cs.columbia.edu/~jebara/4771/tutorials/lecture12.pdf, page 2

90

http://www.cs.columbia.edu/~jebara/4771/tutorials/lecture12.pdf

C Mathematical derivations

with binary hidden units hj ∈ {0, 1}, j = 1 . . . , F , a binary dictionary matrix V k
i ∈ {0, 1},

i = 1, . . . , D, k = 1, . . . ,K and a coupling tensor W k
ij (or using weight sharing a coupling matrix

W k
j). The conditional distribution p(V |h) factorizes into a product of softmax functions as

follows:

p(V |h) =
exp−E(V, h)∑
Ṽ exp(−E(Ṽ , h))

(C.57)

=
exp(

∑K
k=1 h

TW kV k +
(
ak
)T
V k + hTb)∑

Ṽ exp(
∑K

k=1 h
TW kṼ k + (ak)TṼ k + hTb)

(C.58)

=
exp(

∑K
k=1 h

TW kV k +
(
ak
)T
V k)∑

Ṽ exp(
∑K

k=1 h
TW kṼ k + (ak)TṼ k)

(C.59)

=
exp(

∑D
i=1

∑K
k=1 h

TW k
i V

k
i + aki V

k
i)∑

Ṽ exp(
∑D

i=1

∑K
k=1 h

TW k
i Ṽ

k
i + aki Ṽ

k
i)

(C.60)

=
∏D
i=1

∏K
k=1 exp((hTW k

i + aki)V
k
i)∑

Ṽ exp(
∑D

i=1

∑K
k=1(hTW k

i + aki)Ṽ
k
i)

(C.61)

The denominator of Eq. C.61 can be reformulated as follows:

∑
Ṽ

exp

(
D∑
i=1

K∑
k=1

(hTW k
i + aki)Ṽ

k
i

)
(C.62)

=
∑
Ṽ

D∏
i=1

K∏
k=1

exp
((
hTW k

i + aki

)
Ṽ k
i

)
(C.63)

=
∑
Ṽ

D∏
i=1

K∏
k=1

exp

 F∑
j=1

hjW
k
ij + aki

 Ṽ k
i

 (C.64)

=
∑
Ṽ1

∑
Ṽ2

. . .
∑
ṼD

D∏
i=1

K∏
k=1

exp

 F∑
j=1

hjW
k
ij + aki

 Ṽ k
i

 (C.65)

=

∑
Ṽ1

K∏
k=1

exp

 F∑
j=1

hjW
k
1j + ak1

 Ṽ k
1

∑
Ṽ2

. . .
∑
ṼD

D∏
i=2

K∏
k=1

exp

 F∑
j=1

hjW
k
ij + aki

 Ṽ k
i

(C.66)

∗=

 K∑
q=1

exp

 F∑
j=1

hjW
q
1j + aq1

∑
Ṽ2

. . .
∑
ṼD

D∏
i=2

K∏
k=1

exp

 F∑
j=1

hjW
k
ij + aki

 Ṽ k
i

 (C.67)

=
D∏
i=1

K∑
q=1

exp

 F∑
j=1

hjW
q
ij + aqi

 (C.68)

91

C Mathematical derivations

The step from Eq. C.66 to C.67 (∗=) is valid, since with rki :=
∑F

j=1 hjW
k
ij + aki one can see that

the following holds: ∑
Ṽi

K∏
k=1

exp
(
rki Ṽ

k
i

)
= (C.69)

[
exp

(
r1i 1
)︸ ︷︷ ︸

=exp(r1i)

exp
(
r2i 0
)︸ ︷︷ ︸

=1

. . . exp
(
rKi 0

)︸ ︷︷ ︸
=1

]
+ . . .+ (C.70)

+
[

exp
(
r1i 0
)︸ ︷︷ ︸

=1

exp
(
r2i 0
)︸ ︷︷ ︸

=1

. . . exp
(
rKi 1

)︸ ︷︷ ︸
=exp(rKi)

]
=

K∑
q=1

exp (rqi) (C.71)

The Ṽi define a 1-of-K coding scheme (Ṽ k
i ∈ {0, 1} and

∑K
k=1 Ṽ

k
i = 1). However, all K possible

configurations must be taken into account, which is reflected by the term
∑K

q=1 exp(rqi). Inserted
into Eq. C.61: ∏D

i=1

∏K
k=1 exp

((
hTW k

i + aki
)
V k
i

)∏D
i=1

∑K
q=1 exp

(∑F
j=1 hjW

q
ij + aqi

) = p(Vi|h) (C.72)

Thus:

p(V k
i = 1|h) =

∏K
k=1 exp

((
hTW k

i + aki
)
V k
i

)∑K
q=1 exp

(∑F
j=1 hjW

q
ij + aqi

) (C.73)

=
exp

(
hTW k

i + aki
)∑K

q=1 exp
(∑F

j=1 hjW
q
ij + aqi

) (C.74)

holds proposed. And for p(h|V) we get:

p(h|V) =
exp−E(V, h)∑
h̃ exp(−E(V, h̃))

(C.75)

=
exp

(∑K
k=1 h

TW kV k +
(
ak
)T
V k + hTb

)
∑

h̃ exp
(∑K

k=1 h̃
TW kV k + (ak)T V k + h̃Tb

) (C.76)

=

∏F
j=1 exp

(∑D
i=1

∑K
k=1

(
bj +W k

ijv
k
i

)
hj

)
∑

h̃

∏F
j=1 exp

(∑D
i=1

∑K
k=1

(
bj +W k

ijv
k
i

)
h̃j

) (C.77)

=
F∏
j=1

exp
(∑D

i=1

∑K
k=1

(
bj +W k

ijv
k
i

)
hj

)
∑

h̃j
exp

(∑D
i=1

∑K
k=1

(
bj +W k

ijv
k
i

)
h̃j

) (C.78)

(C.79)

92

C Mathematical derivations

Consequently, sampling is easy, too:

p(hj = 1|V) =
exp

(∑D
i=1

∑K
k=1

(
bj +W k

ijv
k
i

))
1 + exp

(∑D
i=1

∑K
k=1

(
bj +W k

ijv
k
i

)) (C.80)

= σ

(
bj +

D∑
i=1

K∑
k=1

W k
ijV

k
i

)
(C.81)

with σ(x) = 1
1+e−x = ex

1+ex being the logistic sigmoid function.

Using the following energy function with V̂ k :=
∑D

i=1 V
k
i , i.e. with weight sharing in action

which leads to the RSM model according Salakhutdinov and Hinton [47] (with omitted index i
at W compared to Eq. C.56):

E(V̂ , h) = −
F∑
j=1

K∑
k=1

hjW
k
j V̂

k −
K∑
k=1

V̂ kak −D
F∑
j=1

hjbj (C.82)

one obtains with a derivation similar to the above:

p(hj = 1|V̂) = σ

(
Dbj +

K∑
k=1

W k
j V̂

k

)
(C.83)

and

p(V̂ k = 1|h) =
exp

(
ak +

∑F
j=1 hjW

k
j

)
∑K

q=1 exp
(
aq +

∑F
j=1 hjW

q
j

) (C.84)

Sample D times using Eq. C.84.

93

Bibliography

[1] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, NP-hardness of Euclidean sum-
of-squares clustering, Mach. Learn., 75 (2009), pp. 245–248.

[2] D. Arthur and S. Vassilvitskii, k-means++: The Advantages of Careful Seeding,
in Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’07, Philadelphia, PA, USA, 2007, Society for Industrial and Applied Mathematics,
pp. 1027–1035.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, SURF: Speeded-Up Robust Fea-
tures, Computer Vision and Image Understanding, 110 (2008), pp. 346–359.

[4] S. Bengio, F. Pereira, Y. Singer, and D. Strelow, Group Sparse Coding, in Ad-
vances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty,
C. K. I. Williams, and A. Culotta, eds., 2009, pp. 82–89.

[5] Y. Bengio, Learning deep architectures for AI, Foundations and Trends in Machine Learn-
ing, 2 (2009), pp. 1–127. Also published as a book. Now Publishers, 2009.

[6] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, Greedy Layer-Wise Train-
ing of Deep Networks, in Advances in Neural Information Processing Systems 19 (NIPS’06),
2006, pp. 153–160.

[7] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statis-
tics), Springer, 1 ed., 2007.

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent Dirichlet Allocation, J. Mach. Learn.
Res., 3 (2003), pp. 993–1022.

[9] L. Bottou and Y. Bengio, Convergence Properties of the K-Means Algorithms, in Ad-
vances in Neural Information Processing Systems 7, MIT Press, 1995, pp. 585–592.

[10] G. J. Burghouts, A. W. M. Smeulders, and J.-M. Geusebroek, The Distribution
Family of Similarity Distances, in NIPS, 2007.

[11] N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, in
CVPR (1), 2005, pp. 886–893.

[12] C. Ding and X. He, K-means Clustering via Principal Component Analysis, in Proceed-
ings of the 21st International Conference on Machine Learning, ICML ’04, New York, NY,
USA, 2004, ACM, pp. 29–.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
The PASCAL Visual Object Classes Challenge 2007 (voc2007) results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

94

Bibliography

[14] Y. Freund and D. Haussler, Unsupervised learning of distributions on binary vectors
using two layer networks, tech. report, University of California at Santa Cruz, 1994.

[15] P. V. Gehler, A. D. Holub, and M. Welling, The Rate Adapting Poisson Model
for Information Retrieval and Object Recognition, in Proceedings of 23rd International
Conference on Machine Learning (ICML 2006, ACM Press, 2006, p. 2006.

[16] G. Hinton, A Practical Guide to Training Restricted Boltzmann Machines (Version 1).
online, August 2010.

[17] G. Hinton and R. Salakhutdinov, Reducing the Dimensionality of Data with Neural
Networks, Science, 313 (2006), pp. 504 – 507.

[18] G. E. Hinton, Training Products of Experts by Minimizing Contrastive Divergence, Neural
Comput., 14 (2002), pp. 1771–1800.

[19] G. E. Hinton, S. Osindero, and Y.-W. Teh, A fast learning algorithm for deep belief
nets, Neural Comput., 18 (2006), pp. 1527–1554.

[20] T. Hofmann, Probabilistic Latent Semantic Indexing, in Proceedings of the 22nd annual
international ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR ’99, New York, NY, USA, 1999, ACM, pp. 50–57.

[21] Y. G. Jiang, J. Yang, C. W. Ngo, and A. G. Hauptmann, Representations of
Keypoint-Based Semantic Concept Detection: A Comprehensive Study, Multimedia, IEEE
Transactions on, 12 (2009), pp. 42–53.

[22] T. Joachims, Making Large-Scale SVM Learning Practical, in Advances in Kernel Methods
- Support Vector Learning, B. Schölkopf, C. J. Burges, and A. Smola, eds., Cambridge, MA,
USA, 1999, MIT Press.

[23] H. Kang, M. Hebert, and T. Kanade, Image matching with distinctive visual vocab-
ulary, in Proceedings of the 2011 IEEE Workshop on Applications of Computer Vision
(WACV), WACV ’11, Washington, DC, USA, 2011, IEEE Computer Society, pp. 402–409.

[24] Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local
Image Descriptors, Computer Vision and Pattern Recognition, IEEE Computer Society
Conference on, 2 (2004), pp. 506–513.

[25] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, master thesis,
University of Toronto, 2009.

[26] S. Lacoste-julien, F. Sha, and M. I. Jordan, DiscLDA: Discriminative Learning for
Dimensionality Reduction and Classification.

[27] S. P. Lloyd, Least Squares Quantization in PCM, IEEE Transactions on Information
Theory, 28 (1982), pp. 129–137.

[28] D. G. Lowe, Object Recognition from Local Scale-Invariant Features, in Proceedings of the
International Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99, Washington,
DC, USA, 1999, IEEE Computer Society, pp. 1150–.

95

Bibliography

[29] D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints., International
Journal of Computer Vision, 60 (2004), pp. 91–110.

[30] J. B. MacQueen, Some Methods for Classification and Analysis of MultiVariate Observa-
tions, in Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability,
L. M. L. Cam and J. Neyman, eds., vol. 1, University of California Press, 1967, pp. 281–297.

[31] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online dictionary learning for sparse
coding, in Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, New York, NY, USA, 2009, ACM, pp. 689–696.

[32] C. D. Manning, P. Raghavan, and H. Schuetze, Introduction to Information Re-
trieval, Cambridge University Press, 2008.

[33] T. K. Marks and J. R. Movellan, Diffusion Networks, Products of Experts, and Factor
Analysis, in in Proc. 3rd Int. Conf. Independent Component Anal. Signal Separation, 2001,
pp. 481–485.

[34] W. S. McCulloch and W. Pitts, A Logical Calculus of Ideas Immanent in Nervous
Activity, Bulletin of Mathematical Biophysics, 5 (1943), pp. 115–133. Reprinted in Neuro-
computing: Foundations of Research, ed. by J. A. Anderson and E Rosenfeld. MIT Press
1988.

[35] K. Mikolajczyk and C. Schmid, A performance evaluation of local descriptors, IEEE
Transactions on Pattern Analysis & Machine Intelligence, 27 (2005), pp. 1615–1630.

[36] V. Mnih, CUDAMat: A CUDA-based matrix class for Python, Tech. Report UTML TR
2009-004, Department of Computer Science, University of Toronto, November 2009.

[37] J. A. Nelder and R. W. M. Wedderburn, Generalized linear models, Journal of the
Royal Statistical Society, Series A, General, 135 (1972), pp. 370–384.

[38] D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, in IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), vol. 2, June 2006, pp. 2161–
2168.

[39] A. D. Peterson, A. P. Ghosh, and R. Maitra, A systematic evaluation of different
methods for initializing the K-means clustering algorithm, Knowledge Creation Diffusion
Utilization, (2010), pp. 1–11.

[40] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object Retrieval with
Large Vocabularies and Fast Spatial Matching, in IEEE Conference on Computer Vision
and Pattern Recognition, 2007.

[41] J. Philbin, M. Isard, J. Sivic, and A. Zisserman, Descriptor Learning for Efficient
Retrieval, in European Conference on Computer Vision, 2010.

[42] P. Resnik and E. Hardisty, Gibbs Sampling for the Uninitiated, Tech. Report LAMP-
TR-153, University of Maryland, College Park, 2010.

96

Bibliography

[43] F. Rosenblatt, Principles of Neurodynamics, Spartan Book, 1962.

[44] N. L. Roux, N. Heess, J. Shotton, and J. M. Winn, Learning a Generative Model of
Images by Factoring Appearance and Shape, Neural Computation, 23 (2011), pp. 593–650.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representa-
tions by error propagation, MIT Press, Cambridge, MA, USA, 1986, pp. 318–362.

[46] R. Salakhutdinov and G. Hinton, Semantic Hashing, in SIGIR Workshop on Informa-
tion Retrieval and Applications of Graphical Models, 2007.

[47] R. Salakhutdinov and G. Hinton, Replicated Softmax: an Undirected Topic Model, in
Neural Information Processing Systems 23, 2010.

[48] R. Salakhutdinov and I. Murray, On the Quantitative Analysis of Deep Belief Net-
works, in Proceedings of the International Conference on Machine Learning, vol. 25, 2008.

[49] M. S. Sarfraz and O. Hellwich, Head Pose Estimation in Face Recognition Across
Pose Scenarios, in VISAPP (1), 2008, pp. 235–242.

[50] S. Schroeder, Interaktion gedächtnis- und erklärungs-basierter Verarbeitungsprozesse bei
der pronominalen Auflösung, PhD thesis, Universität Köln, 2007.

[51] D. Sculley, Web-scale k-means clustering, in Proceedings of the 19th international con-
ference on World wide web, WWW ’10, New York, NY, USA, 2010, ACM, pp. 1177–1178.

[52] J. Sivic and A. Zisserman, Video Google: A text retrieval approach to object matching
in videos, in Proceedings of the International Conference on Computer Vision, vol. 2, Oct.
2003, pp. 1470–1477.

[53] P. Smolensky, Information Processing in Dynamical Systems: Foundations of Harmony
Theory, MIT Press, Cambridge, MA, USA, 1986, pp. 194–281.

[54] T. Tieleman, Gnumpy: an easy way to use GPU boards in Python, Tech. Report UTML
TR 2010-002, University of Toronto, Department of Computer Science, 2010.

[55] L. Van Der Maaten and G. Hinton, Visualizing Data using t-SNE, Journal of Machine
Learning Research, 9 (2008), pp. 2579–2605.

[56] A. Vedaldi., An open implementation of the SIFT detector and descriptor, 2007.

[57] A. Vedaldi, VLfeat SIFT Tutorial. Online, June 2011. http://www.vlfeat.org/
overview/sift.html.

[58] M. Welling, M. Rosen-Zvi, and G. Hinton, Exponential Family Harmoniums with an
Application to Information Retrieval, Training, 17 (2005), pp. 1481–1488.

[59] B. Widrow and M. E. Hoff, Adaptive Switching Circuits, in Institute of Radio Engineers,
Western Electronic Show and Convention, Convention Record, Part 4, 1960, pp. 96–104.

[60] S. A. J. Winder and M. Brown, Learning Local Image Descriptors, in CVPR, 2007,
pp. 1–8.

97

http://www.vlfeat.org/overview/sift.html
http://www.vlfeat.org/overview/sift.html

Bibliography

[61] F. Wood, Training Products of Experts by Minimizing Contrastive Divergence from Geof-
frey E. Hinton presented by Frank Wood. http://www.cs.brown.edu/ fwood/tutorials/Con-
trastiveDivergenceSlides.ppt.

[62] E. P. Xing, R. Yan, and A. G. Hauptmann, Mining Associated Text and Images
with Dual-Wing Harmoniums, in In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence (UAI-2005, AUAI press, 2005.

[63] J. Yang, R. Yan, Y. Liu, and E. P. Xing, Harmonium Models for Video Classification,
Statistical Analysis and Data Mining, 1 (2008), pp. 23–37.

[64] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon, Spectral Relaxation for
K-means Clustering., in NIPS’01, 2001, pp. 1057–1064.

[65] H. Zhang, T. W. S. Chow, and M. K. M. Rahman, A new dual wing harmonium
model for document retrieval, Pattern Recogn., 42 (2009), pp. 2950–2960.

[66] X. Zhou, K. Yu, T. Zhang, and T. S. Huang, Image Classifcation using Super-Vector
Coding of Local Image Descriptors, in Proceedings of the 11th European Conference on
Computer Vision: Part V, ECCV’10, Berlin, Heidelberg, 2010, Springer-Verlag, pp. 141–
154.

98

	Introduction
	Prerequisites and related work
	Datasets
	20 Newsgroups
	PASCAL VOC 2007

	Scale-Invariant Feature Transform (SIFT)
	Mini-batch k-Means (MBKM)
	Logistic Regression & Multiclass Logistic Regression
	Feed-forward Neural Networks & error backpropagation
	Deep Belief Networks (DBN) & Deep Auto-Encoders (DAE)
	Restricted Boltzmann Machines (RBM) & Harmonium models
	Product of Experts (PoE) & Contrastive Divergence (CD)
	Standard RBM
	Exponential Family Harmonium (EFH)
	Undirected Probabilistic Latent Semantic Indexing (UP-LSI)
	Rate Adapting Poisson (RAP)
	Constrained Poisson Model (CP) & Semantic Hashing (SH)
	Replicated Softmax (RSM)
	Dual Wing Harmonium (DWH)
	Practical issues of Contrastive Divergence learning

	Own work
	Evaluation of the Replicated Softmax model for document retrieval on the 20 Newsgroups dataset
	Neural Networks with Replicated Softmax input layers, modified error backpropagation and training details
	Document classification using Neural Networks with Replicated Softmax input layers on the 20 Newsgroups dataset
	Extraction of visual words and visual word counts
	Evaluation of Neural Networks with Replicated Softmax input layers on visual word counts
	DualRSM model & visual word all-to-all distance counts

	Conclusion
	Development environment
	Batch-, online- and minibatch-methods & momentum
	Mathematical derivations
	Sigmoid, softmax and hyperbolic tangent function derivatives
	Cross-entropy error function gradients
	Conditional independence and sampling in the RBM model
	Conditional independence and sampling in the EFH model
	Conditional independence and sampling in the RSM model

	Bibliography

